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At present the theory of skew-symmetric exterior di�erential forms has been developed [1{6]. Th closed exterior
di�erential forms may possess the invariant, group, tensor, structural and other properties that are of great functional
and utilitarian importance. The operators of the exterior di�erential form theory lie at the basis of the di�erential
and integral operators of the �eld theory. However, the theory of exterior di�erential forms, being invariant one,
does not answer the questions related to the evolutionary processes. In the work the readers are introduced to the
skew-symmetric di�erential forms that possess evolutionary properties [7,8]. They were called evolutionary ones.
The mathematical apparatus of exterior and evolutionary di�erential forms allows description of discrete transitions,
quantum steps, evolutionary processes, generation of various structures. These are radically new possibilities of
the mathematical physics. In the paper is shown that a role of exterior and evolutionary di�erential forms in the
mathematical physics is conditioned by the fact that they re
ect properties of the conservation laws and allow
elucidate a mechanism of evolutionary processes in material media, which lead to the rise of physical �elds and
formatting physical �elds and phenomena.

Introduction

Development of the di�erential and integral calculus in
17 centure gave rise to a development of mathematical
physics. Di�erential equations, boundary and initial
problems enable one to describe many physical pro-
cesses and phenomena. However, since the beginning
of the 20th century a close connection of the di�eren-
tial and integral calculus and di�erential equations with
physics has become weak. In mathematical physics it
has arose the problem of invariant (independent of the
choice of the coordinate system) description of physi-
cal phenomena. As the result, formalisms based on the
tensor, group, variational methods, on the theories of
the symmetries, transforms and so on with the basic re-
quirement of invariance have been developed in physics.
In particular, it is most evident in branches of physics
that are related to �eld theories.

It turns out that the closed exterior di�erential
forms possess by all the same properties (invariant,
group, tensor, structural, and other ones) that lie at
the basis that of all invariant approaches in the math-
ematical physics [9-13]. The role of di�erential forms
in physics relates to that the closed di�erential forms
re
ect the properties of conservation laws and poten-
tials. Invariant properties of closed exterior di�erential

1e-mail: ptr@cs.msu.su

forms explicitly or implicitlymanifest themselves essen-
tially in all formalisms of the �eld theory, such as the
Hamilton formalism, tensor approaches, group meth-
ods, quantummechanics equations, the Yang-Mills the-
ory and others. The exterior di�erential forms integrate
the algebraic and geometric approaches in physics.

However, the invariant methods of the mathemati-
cal physics with all their signi�cance nevertheless do not
solve all the problems of methematical physics. They
do not answer the question of related to the evolution-
ary processes, origination of various physical structures,
formatting physical �elds, a causality of physical phe-
nomena, and so on. To answer these questions one
again is forced to apply to the di�erential methods of
investigations of the mathematical physics. And for
these investigations the evolutionary di�erential forms
appear to be necessary. They make it possible to keep
track of the conjugacy of the equations, which describe
physical processes that are necessary for investigating
the evolutionary processes.

A signi�cance of the evolutionary di�erential forms
for mathematical physics, as well as of the exterior dif-
ferential forms, is related to the fact that they re
ect
properties of the conservation laws. And, whereas prop-
erties of the closed di�erential forms correspond to the
conservation laws for physical �elds, properties of the
evolutionary forms correspond to the conservation laws
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for material media.
The existence of the skew-symmetric di�erential

forms (forms with exterior multiplication), which pos-
sess the evolutionary properties, has been established
by the author while studying the problems of stability
and generation of various physical structures. Investi-
gation of these problems showed that there exists an
unique mathematical apparatus of di�erential forms
that makes it possible to elucidate the mechanism of
evolutionary processes.

1. Properties and speci�c features of
the exterior di�erential forms

The exterior di�erential form of degree p (p-form on
the di�erentiable manifold) can be written as [5,6,11]

�p =
P

i1:::ip
ai1:::ipdx

i1 ^ dxi2 ^ : : :^ dxip ;
0 � p � n:

(1:1)

Here ai1:::ip are the functions of the variables xi1 , xi2 ,
. . . , xip , n is the dimension of space, ^ is the operator
of exterior multiplication, dxi , dxi ^ dxj , dxi ^ dxj ^
dxk , . . . is the local basis which satis�es the condition
of exterior multiplication:

dxi ^ dxi = 0;
dxi ^ dxj = �dxj ^ dxi; i 6= j:

(1:2)

[From here on the symbol
P

will be omitted and it
will be implied that the summation is performed over
double indices. Besides, the symbol of exterior multipli-
cation will be also omitted for the sake of presentation
convenience].

The local domains of manifold are the basis of the
exterior form.

It should be emphasized that the exterior di�eren-
tial forms and their operators are considered locally.

The di�erential of the (exterior) form �p is ex-
pressed as

d�p =
X
i1:::ip

dai1:::ipdx
i1dxi2 : : :dxip : (1:3)

From de�nition of a di�erential one can see that,
�rstly, the di�erential of the exterior form is also the
exterior form (but with the degree (p + 1)), and, sec-
ondly, he can see that the components of the di�eren-
tial form commutator are coe�cients of the form dif-
ferential. Thus, the di�erential of the �rst-degree form
! = aidx

i can be written as d! = Kijdx
idxj where

Kij are the components of the commutator for the form
! that are de�ned as Kij = (@aj=@xi � @ai=@xj).

Closed exterior di�erential forms

In physical applications the closed di�erential forms
with invariant properties appear to be of greatest prac-
tical utility.

A form is called a closed one if its di�erential is
equal to zero:

d�p = 0: (1:4)

From condition (1.4) one can see that the closed
form is a conservative quantity. This means that it can
correspond to the conservation law, namely, to some
conservative physical quantity.

The di�erential of the form is a closed form. That
is

dd! = 0; (1:5)

where ! is an arbitrary exterior form.
The formwhich is the di�erential of some other form

�p = d�p�1 (1:6)

is called an exact form. The exact forms prove to be
closed automatically [9]

d�p = dd�p�1 = 0: (1:7)

Here it is necessary to pay attention to the follow-
ing points. In the above presented formulas it was im-
plicitly assumed that the di�erential operator d is the
total one (that is, the operator d acts everywhere in
the vicinity of the point considered locally), and there-
fore it acts on the manifold of the initial dimension
n . However, the di�erential may be internal. Such
a di�erential acts on some structure with the dimen-
sion being less than that of the initial manifold. The
structure, on which the exterior di�erential form may
become a closed inexact form, is a pseudostructure with
respect to its metric properties. fCohomology, sections
of cotangent bundles, the eikonal surfaces and so on
may be regarded as examples of pseudostructures.g The
properties of pseudostructures will be considered later.

If the form is closed on a pseudostructure only, the
closure condition is written as

d��
p = 0: (1:8)

And the pseudostructure � obeys the condition

d�
��p = 0; (1:9)

where ��p is the dual form. (For the properties of dual
forms see [12]).

>From conditions (1.8) and (1.9) one can see that
the form closed on pseudostructure (a closed inexact
form) is a conservative object, namely, this quantity
conserves on pseudostructure. This can also correspond
to some conservation law, i.e. to conservative object.
(These are precisely the objects which are physical
structures that form physical �elds.)

The exact form is, by de�nition, a di�erential (see
condition (1.6)). In this case the di�erential is total.
The closed inexact form is a di�erential too. The closed
inexact form is an interior (on pseudostructure) di�er-
ential, that is

�p� = d��
p�1: (1:10)
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And so, any closed form is a di�erential of the form
of a lower degree: the total one �p = d�p�1 if the form is
exact, or the interior one �p = d��p�1 on pseudostruc-
ture if the form is inexact. From this it follows that
the form of lower degree may correspond to the poten-
tial, and the closed form by itself may correspond to
the potential force.

Invariant properties of closed exterior
di�erential forms. Conjugacy of the exterior
di�erential forms

Since the closed form is a di�erential (a total one if the
form is exact, or an interior one on the pseudostruc-
ture if the form is inexact), then it is obvious that
the closed form proves to be invariant under all trans-
forms that conserve the di�erential. The unitary trans-
forms (0-form), the tangent and canonical transforms
(1-form),the gradient and gauge transforms (2-form)
and so on are examples of such transforms. These are
gauge transforms for spinor, scalar, vector, tensor (3-
form) �elds. (It is to be pointed out that just such
transforms are used in �eld theory).

As mentioned above, from the closure condition it
follows that the closed exterior di�erential forms are
conservative objects. As the result, the closed form
is a conservative invariant object. The covariance of
the dual form is directly connected with the invariance
of the exterior closed inexact form. This property of
closed exterior di�erential forms and dual forms plays
an essential role in describing the conservation laws and
lies at the basis of the �eld theory.

The closure of the exterior di�erential forms and
hence their invariance result from the conjugacy of ele-
ments of the exterior or dual forms.

From the de�nition of the exterior di�erential form
one can see that the exterior di�erential forms have
complex structure. The speci�c features of the exterior
form structure are homogeneity with respect to the ba-
sis, skew-symmetry, the integration of terms each con-
sisting of two objects of di�erent nature (the algebraic
nature for the form coe�cients, and the geometric na-
ture for the base components). Besides, the exterior
form depends on the space dimension and on the mani-
fold topology. The closure property of the exterior form
means that any objects, namely, elements of the exteri-
or form, components of elements, elements of the form
di�erential, exterior and dual forms and others, turn
out to be conjugated. It is the conjugacy that leads to
realization of the invariant and covariant properties of
the exterior and dual forms that have a great functional
and applied importance. The variety of objects of con-
jugacy leads to the fact that the closed forms can de-
scribe a great number of di�erent physical and spatial
structures, and this fact once again emphasizes great
mathematical potentialities of the exterior di�erential
forms.

Operators of the theory of exterior di�erential
forms

In di�erential calculus the derivatives are basic elements
of the mathematical apparatus. By contrast, the di�er-
ential is an element of mathematical apparatus of the
theory of exterior di�erential forms. It enables one to
analyze the conjugacy of derivatives in various direc-
tions, which extends potentialities of di�erential calcu-
lus.

The operator of exterior di�erential d (exterior
di�erential) is an abstract generalization of ordinary
mathematical operations of the gradient, curl, and di-
vergence in the vector calculus [6]. If, in addition to the
exterior di�erential, we introduce the following opera-
tors: (1) � for transforms that convert the form of p+1
degree into the form of p degree, (2) �0 for cotangent
transforms, (3) � for the d�� �d transform, (4)�0 for
the d�0 � �0d transform, then in terms of these opera-
tors that act on the exterior di�erential forms one can
write down the operators in the �eld theory equations.
The operator � corresponds to Green's operator, �0

does to the canonical transform operator, � does to
the d'Alembert operator in 4-dimensional space, and
�0 corresponds to the Laplace operator [11-13]. It
can be seen that the operators of the exterior di�eren-
tial form theory are connected with many operators of
mathematical physics.

Identical relations of exterior di�erential forms

In the theory of exterior di�erential forms the closed
forms that possess various types of conjugacy play a
principal role. Since the conjugacy is a certain connec-
tion between two operators or mathematical objects, it
is evident that relations can be used to express con-
jugacy mathematically. Just such relations constitute
the basis of the mathematical apparatus of the exterior
di�erential forms. This is an identical relation.

The identical relations for exterior di�erential forms
re
ect the closure conditions of the di�erential forms,
namely, vanishing the form di�erential (see formulas
(1.4), (1.8), (1.9)) and the conditions connecting the
forms of consequent degrees (see formulas (1.6), (1.10)).

The importance of the identical relations for exte-
rior di�erential forms is manifested by the fact that
practically in all branches of physics, mechanics, ther-
modynamics one faces such identical relations. One can
present the following examples:

a) the Poincare invariant ds = �H dt + pj dqj ,
b) the second principle of thermodynamics dS =

(dE + p dV )=T ,
c) the vital force theorem in theoretical mechanics:

dT = Xidx
i , where Xi are the components of the po-

tential force, and T = mV 2=2 is the vital force,
d) the conditions on characteristics [14] in the the-

ory of di�erential equations, and so on.
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The identical relations in di�erential forms express
the fact that each closed exterior form is a di�erential
of some exterior form (with the degree less by one). In
general form such an identical relation can be written
as

d�� = �p� : (1:11)

In this relation the form in the right-hand side has to be
a closed one. (As it will be shown below, the identical
relations are satis�ed only on pseudostructures).

In identical relation (1.11) in one side it stands the
closed form and in other side does the di�erential of
some di�erential form of the less by one degree, which
is the closed form as well.

In addition to relations in the di�erential forms from
the closure conditions of the di�erential forms and the
conditions connecting the forms of consequent degrees
the identical relations of other types are obtained. The
types of such relations are presented below.

1. Integral identical relations.
The formulas by Newton, Leibnitz, Green, the in-

tegral relations by Stokes, Gauss-Ostrogradskii are ex-
amples of integral identical relations.

2. Tensor identical relations.
From the relations that connect exterior forms of

consequent degrees one can obtain the vector and ten-
sor identical relations that connect the operators of the
gradient, curl, divergence and so on.

From the closure conditions of exterior and dual
forms one can obtain the identical relations such as the
gauge relations in electromagnetic �eld theory, the ten-
sor relations between connectednesses and their deriva-
tives in gravitation (the symmetry of connectednesses
with respect to lower indices, the Bianchi identity, the
conditions imposed on the Christo�el symbols) and so
on.

3. Identical relations between derivatives.
The identical relations between derivatives corre-

spond to the closure conditions of exterior and dual
forms. The examples of such relations are the above
presented Cauchi-Riemann conditions in the theory of
complex variables, the transversality condition in the
calculus of variations, the canonical relations in the
Hamilton formalism, the thermodynamic relations be-
tween derivatives of thermodynamic functions [15], the
condition that the derivative of implicit function is sub-
jected to, the eikonal relations [16] and so on.

Nondegenerate transforms

One of the fundamental methods in the theory of ex-
terior di�erential forms is application of nondegener-
ate transforms (below it will be shown that degenerate
transforms appear in the mathematical apparatus of
the evolutionary forms).

Nondegenerate transforms, if applied to identical re-
lations, enable one to obtain new identical relations and
new closed exterior di�erential forms.

In the theory of exterior di�erential forms the non-
degenerate transforms are those that conserve the dif-
ferential. The examples of nondegenerate transforms
are unitary, tangent, canonical, gradient, and gauge
transforms.

From description of operators of exterior di�erential
forms one can see that those are operators that execute
some transforms. All these transforms are connected
with the above listed nondegenerate transforms of ex-
terior di�erential forms.

Thus, even from this brief description of the prop-
erties and speci�c features of the exterior di�erential
forms can clearly see wide functional and utilitarian
potentialities of exterior di�erential forms.

Before going to description of a new evolutionary
di�erential forms it should dwell on the properties of
manifolds on which skew-symmetric di�erential forms
are de�ned.

2. Some properties of manifolds

In the de�nition of exterior di�erential forms a di�er-
entiable manifold was mentioned. Di�erentiable mani-
folds are topological spaces that locally behave like Eu-
clidean spaces [9,17].

But di�erentiable manifolds are not a single type of
manifolds on which the exterior di�erential forms are
de�ned. In the general case there are manifolds with
structures of any types. The theory of exterior di�eren-
tial forms was developed just for such manifolds. They
may be the Hausdor� manifolds, �ber spaces, the co-
mological, characteristical, con�guration manifolds and
so on. These manifolds and their properties are treated
in [2,4,9,11] and in some other works. Since all these
manifolds possess structures of any types, they have
one common property, namely, locally they admit one-
to-one mapping into the Euclidean subspaces and into
other manifolds or submanifolds of the same dimension
[9].

While describing the evolutionary processes in ma-
terial system one is forced to deal with manifolds which
do not allow one-to-one mapping described above. The
manifolds that can be called accompanying manifolds
are variable manifolds. The di�erential forms that arise
when evolutionary processes are being described can be
de�ned on manifolds of this type.

What are the characteristic properties and speci�c
features of accompanyingmanifolds and of evolutionary
di�erential forms connected with them?

To answer this question, let us analyze some prop-
erties of metric forms.

Assume that on the manifold one can set the coordi-
nate system with base vectors e� and de�ne the metric
forms of manifold [18]: (e�e�), (e�dx�), (de�). The
metric forms and their commutators de�ne the metric
and di�erential characteristics of the manifold.
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If metric forms are closed (the commutators are
equal to zero), then the metric is de�ned g�� = (e�e�)
and the results of translation over manifold of the point
dM = (e�dx�) and of the unit frame dA = (de�)
prove to be independent of the curve shape (the path
of integration).

The closed metric forms de�ne the manifold struc-
ture, and the commutators of metric forms de�ne
the manifold di�erential characteristics that specify
the manifold deformation: bending, torsion, rotation,
twist.

It is evident that manifolds that are metric ones or
possess the structure have closed metric forms. It is
with such manifolds that the exterior di�erential forms
are connected.

If the manifolds are deformingmanifolds, this means
that their metric form commutators are nonzero. That
is, the metric forms of such manifolds turn out to be
unclosed. The accompanying manifolds appearing to
be deforming are the examples of such manifolds.

The skew-symmetric evolutionary di�erential forms
whose basis are accompanying deforming manifolds are
de�ned on manifolds with unclosed metric forms.

What are the characteristic properties and speci�c
features of such manifolds and the related di�erential
forms?

For description of the manifold di�erential charac-
teristics and, correspondingly, the metric forms com-
mutators one can use the connectednesses [2,5,9,18].

Let us consider the a�ne connectednesses and their
relations to commutators of metric forms.

The components of metric forms can be expressed
in terms of connectedness ���� [18]. The expressions
���� , (�

�
�� � ����), R

�
��� are components of the com-

mutators of the metric forms of zero- �rst- and third
degrees. (The commutator of the second degree metric
form is written down in a more complex manner [18],
and therefore it is not given here).

As it is known [18], for the Euclidean manifold these
commutators vanish identically. For the Riemann man-
ifold the commutator of the third-degree metric form is
nonzero: R�

��� 6= 0.
Commutators of interior metric forms vanish in the

case of manifolds that allow local one-to-one mapping
into subspaces of the Euclidean space. In other words,
the metric forms of such manifolds turn out to be closed.

With the metric form commutators the topological
properties of manifolds are connected. The metric form
commutators specify the manifold distortion. For ex-
ample, the commutator of the zero degree metric form
���� characterizes the bend, that of the �rst degree form
(���� � ����) characterizes the torsion, the commutator
of the third -degree metric form R�

��� determines the
curvature.

As it will be shown in the next section, it is with
the properties of the metric form commutators that the
characteristic properties of di�erential forms whose ba-

sis are manifolds with unclosed metric forms are con-
nected.

3. Evolutionary di�erential forms

Thus, the exterior di�erential forms are skew-symmetric
di�erential forms de�ned on manifolds, submanifolds or
on structures with closed metric forms. The evolution-
ary di�erential forms are skew-symmetric di�erential
forms de�ned on manifolds with metric forms that are
unclosed.

Let us point cut some properties of evolutionary
forms and show what their di�erence from exterior dif-
ferential forms is manifested in. An evolutionary di�er-
ential form of degree p (p-form), as well as an exterior
di�erential form, can be written down as

!p =
P

�1:::�p
a�1:::�p

dx�1 ^ dx�2 ^ : : :^ dx�p;

0 � p � n;
(3:1)

where the local basis obeys the condition of exterior
multiplication

dx� ^ dx� = 0;
dx� ^ dx� = �dx� ^ dx�; � 6= �

(the summation over repeated indices is implied).
But the evolutionary form di�erential cannot be

written similarly to that presented for exterior di�eren-
tial forms (see formula (1.3)). In the evolutionary form
di�erential there appears an additional term connected
with the fact that the basis of the form changes. For
the di�erential forms de�ned on the manifold with un-
closed metric form one has d(dx�1dx�2 : : :dx�p) 6= 0.
For this reason the di�erential of the evolutionary form
!p can be written as

d!p=
P

�1:::�p
da�1:::�pdx

�1dx�2 : : :dx�p+

+
P

�1:::�p
a�1:::�pd(dx

�1dx�2 : : :dx�p);
(3:2)

where the second term is connected with the di�erential
of the basis. That is expressed in terms of the metric
form commutator. For the manifold with a closed met-
ric form this term vanishes.

For example, let us consider the �rst-degree form
! = a�dx� . The di�erential of this form can be writ-
ten as d! = K��dx�dx� , where K�� = a�;� � a�;�
are the components of the commutator of the form ! ,
and a�;� , a�;� are the covariant derivatives. If we ex-
press the covariant derivatives in terms of the connect-
edness (if it is possible), then they can be written as
a�;� = @a�=@x� + ����a� , where the �rst term results
from di�erentiating the form coe�cients, and the sec-
ond term results from di�erentiating the basis. (In the
Euclidean space the covariant derivatives coincide with
ordinary ones since in this case the derivatives of the
basis vanish). If we substitute the expressions for co-
variant derivatives into the formula for the commutator
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components, then we obtain the following expression for
the commutator components of the form ! :

K�� =

�
@a�
@x�

� @a�
@x�

�
+ (���� � ����)a�: (3:3)

Here the expressions (����� ����) entered into the sec-
ond term are just the components of commutator of the
�rst-degree metric form.

That is, the corresponding metric form commutator
will enter into the di�erential form commutator.

Thus, the di�erentials and, correspondingly, the
commutators of exterior and evolutionary forms are of
di�erent types.

Nonclosure of evolutionary di�erential forms

The evolutionary di�erential form commutator, in con-
trast to that of the exterior one, cannot be equal to
zero because it involves the metric form commutator
being nonzero. This means that the evolutionary form
di�erential is nonzero. Hence, the evolutionary di�er-
ential form, in contrast to the case of the exterior form,
cannot be closed.

Since the evolutionary di�erential forms are un-
closed, the mathematical apparatus of evolutionary
di�erential forms does not seem to possess any possibil-
ities connected with the algebraic, group, invariant and
other properties of closed exterior di�erential forms.
However, the mathematical apparatus of evolutionary
forms proves to be signi�cantly wider due to the fact
that evolutionary di�erential forms can generate closed
exterior di�erential forms. The mathematical appara-
tus of evolutionary di�erential forms includes, as it will
be shown below, some new unconventional elements.

Nonidentical relations of evolutionary
di�erential forms

Above it was shown that the identical relations lie at
the basis of the mathematical apparatus of exterior dif-
ferential forms.

In contrast to this, nonidentical relations lie at the
basis of the mathematical apparatus of evolutionary dif-
ferential forms.

The nonidentical relation is a relation between a
closed exterior di�erential form, which is a di�erential
and is a measurable quantity, and an evolutionary form
that is an unmeasurable quantity.

Nonidentical relations of such type appear in de-
scriptions of the physical processes. They may be writ-
ten as

d = !p: (3:4)

Here !p is the p-degree evolutionary form that is non-
integrable,  is some form of degree (p � 1), and the
di�erential d is a closed form of degree p .

This relation is an evolutionary relation as it in-
volves an evolutionary form.

In the left-hand side of this relation it stands the
form di�erential, i.e. a closed form that is an invariant
object. In the right-hand side it stands the noninte-
grable unclosed form that is not an invariant object.
Such a relation cannot be identical.

One can see a di�erence of relations for exterior
forms and evolutionary ones. In the right-hand side of
identical relation (1.11) it stands a closed form, whereas
the form in the right-hand side of nonidentical relation
(3.4) is an unclosed one.

How is this relation obtained?
Let us consider this by the example of the �rst de-

gree di�erential forms. A di�erential of the function
of more than one variables can be an example of the
�rst degree form. In this case the function itself is the
exterior form of zero degree. The state function that
speci�es the state of a material system can serve as an
example of such function. When the physical process-
es in a material system are being described, the state
function may be unknown, but its derivatives may be
known. The values of the function derivatives may be
equal to some expressions that are obtained from the
description of a real physical process. And it is neces-
sary to �nd the state function.

Assume that  is the desired state function that
depends on the variables x� and also assume that its
derivatives in various directions are known and equal
to some quantities a� , namely:

@ 

@x�
= a�: (3:5)

Let us set up the di�erential expression (@ =@x�)dx�

(here the summation over repeated indices is implied).
This di�erential expression is equal to

@ 

@x�
dx� = a�dx

�: (3:6)

Here the left-hand side of the expression is a di�erential
of the function d , and in the right-hand side it stands
the di�erential form ! = a�dx� . Relation (3.6) can be
written as

d = !: (3:7)

It is evident that relation (3.7) is of the same type as
(3.4) under the condition that the di�erential form de-
grees are equal to 1.

This relation is nonidentical because the di�erential
form ! is an unclosed di�erential form. The commu-
tator of this form is nonzero since the expressions a�
for the derivatives (@ =@x�) are nonconjugated quan-
tities. They are obtained from the description of an
actual physical process and are unmeasurable quanti-
ties.

One can come to relation (3.7) by means of analyz-
ing the integrability of the partial di�erential equation.
An equation is integrable if it can be reduced to the
form d = dU . However it appears that, if the equa-
tion is not subjected to an additional condition (the
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integrability condition), it is reduced to the form (3.7),
where ! is an unclosed form and it cannot be expressed
as a di�erential. The �rst principle of thermodynamics
is an example of nonidentical relation.

How to work with nonidentical relation?

While investigating real physical processes one often
faces the relations that are nonidentical. But it is com-
monly believed that only identical relations can have
any physical meaning. For this reason one immediately
attempts to impose a condition onto the nonidentical
relation under which this relation becomes identical,
and it is considered only that can satisfy the additional
conditions. And all remaining is rejected. It is not tak-
en into account that a nonidentical relation is often ob-
tained from a description of some physical process and
it has physical meaning at every stage of the physical
process rather than at the stage when the additional
conditions are satis�ed. In essence the physical process
does not considered completely.

This approach does not solve the evolutionary prob-
lem.

Below we present the evolutionary approach to the
investigation of the nonidentical relation.

At this point it should be emphasized that the non-
identity of the evolutionary relation does not mean the
imperfect accuracy of the mathematical description of
a physical process. The nonidentical relations are in-
dicative of speci�c features of the physical process de-
velopment.

Selfvariation of the evolutionary nonidentical
relation

The evolutionary nonidentical relation is selfvarying,
because, �rstly, it is nonidentical, namely, it contains
two objects one of which appears to be unmeasurable,
and, secondly, it is an evolutionary relation, namely,
the variation of any object of the relation in some pro-
cess leads to variation of another object and, in turn,
the variation of the latter leads to variation of the for-
mer. Since one of the objects is an unmeasurable quan-
tity, the other cannot be compared with the �rst one,
and hence, the process of mutual variation cannot stop.
This process is governed by the evolutionary form com-
mutator.

Varying the evolutionary form coe�cients leads to
varying the �rst term of the commutator (see (3.3)).
In accordance with this variation it varies the second
term, that is, the metric form of the manifold varies.
Since the metric form commutators speci�es the mani-
fold di�erential characteristics that are connected with
the manifold deformation (for example, the commuta-
tor of the zero degree metric form speci�es the bend,
that of second degree speci�es various types of rotation,
that of the third degree speci�es the curvature), then it

points to the manifold deformation. This means that it
varies the evolutionary form basis. In turn, it leads to
variation of the evolutionary form, and the process of
intervariation of the evolutionary form and the basis is
repeated. The processes of variation of the evolution-
ary form and the basis are governed by the evolution-
ary form commutator and it is realized according to the
evolutionary relation.

Selfvariation of the evolutionary relation goes on
by exchange between the evolutionary form coe�cients
and the manifold characteristics. This is an exchange
between physical quantities and space-time character-
istics. (This is an exchange between quantities of dif-
ferent nature).

The process of the evolutionary relation selfvaria-
tion cannot come to an end. This is indicated by the
fact that both the evolutionary form commutator and
the evolutionary relation involve unmeasurable quanti-
ties.

The question arises whether an identical relation
can be obtained from this nonidentical selfvarying re-
lation, which would allow determination of the desired
di�erential form under the di�erential sign.

It appears that it is possible under the degenerate
transform.

Degenerate transforms.

To obtain an identical relation from the evolutionary
nonidentical relation, it is necessary that a closed ex-
terior di�erential form should be derived from the evo-
lutionary di�erential form that is included into evolu-
tionary relation.

However, as it was shown above, the evolutionary
form cannot be a closed form. For this reason the the
transition from an evolutionary form is possible only
to an inexact closed exterior form that is de�ned on
pseudostructure.

To the pseudostructure there corresponds a closed
dual form (whose di�erential vanishes). For this rea-
son a transition from an evolutionary form to a closed
exterior form proceeds only when the conditions of van-
ishing the dual form di�erential are realized, in other
words, when the the metric form di�erential or commu-
tator becomes equal to zero.

The conditions of vanishing the dual form di�eren-
tial (additional conditions) determine the closed metric
form and thereby specify the pseudostructure (the dual
form).

In this case the closed exterior (inexact) form is
formed. The evolutionary form commutator and, cor-
respondingly, the evolutionary form di�erential vanish
on the pseudostructure.

At this point it should be emphasized that the com-
mutator, that equals zero, (and the di�erential) is an
interior one. This commutator is de�ned only on the
pseudostructure, the total commutator being nonzero.
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The evolutionary form remains to be unclosed.
Since the evolutionary form di�erential is nonze-

ro, whereas the closed exterior form di�erential is ze-
ro, then a passage from the evolutionary form to the
closed exterior form is allowed only under degenerate
transform.

The conditions of vanishing the dual form di�er-
ential (an additional condition) are the conditions of
degenerate transform.

Additional conditions can be realized, for example,
if it will appear any symmetries of the evolutionary
form coe�cients or its commutator. This can happen
under selfvariation of the nonidentical relation. (Whyle
describing material system such additional conditions
are related, for example, to additional degrees of free-
dom).

Mathematically to the conditions of degenerate
transform there corresponds a requirement that some
functional expressions become equal to zero. Such
functional expressions are Jacobians, determinants, the
Poisson brackets, residues, and others.

Obtaining an identical relation from a
nonidentical one

Assume that the nonidentical relation has the form of
(3.4) and from the evolutionary form !p the di�erential
form closed on pseudostructure was obtained. Since the
closed exterior form is a di�erential, in this case the evo-
lutionary relation (3.4) becomes identical on the pseu-
dostructure. From this relation one can �nd the desired
di�erential d� that is equal to the closed exterior dif-
ferential form derived. One can obtain the desired form
 from this di�erential.

It can be shown that all identical relations of the
exterior di�erential form theory are obtained from non-
identical relations (that contain the evolutionary forms)
by applying the degenerate transform.

Under degenerate transform the evolutionary form
di�erential vanishes only on pseudostructure. The total
di�erential of the evolutionary form is nonzero. The
evolutionary form tremains unclosed.

Integration of the nonidentical evolutionary
relation

Under degenerate transform from the nonidentical evo-
lutionary relation one obtains a relation being identical
on pseudostructure. It is just a relation that one can
integrate and obtain the relation with the di�erential
forms of less by one degree.

The relation obtained after integration proves to be
nonidentical as well.

The obtained nonidentical relation of degree (p�1)
can be integrated once again if the corresponding de-
generate transform is realized and the identical relation
is formed.

By sequential integrating the evolutionary relation
of degree p (in the case of realization of the correspond-
ing degenerate transforms and forming the identical re-
lation), one can get closed (on the pseudostructure) ex-
terior forms of degree k , where k ranges from p to
0.

In this case one can see that under such integration
closed (on the pseudostructure) exterior forms, which
depend on two parameters, are obtained. These pa-
rameters are the degree of evolutionary form p (in the
evolutionary relation) and the degree of created closed
forms k .

In addition to these parameters, another parameter
appears, namely, the dimension of space. If the evolu-
tionary relation generates the closed forms of degrees
k = p , k = p�1, . . . , k = 0, to them there correspond
the pseudostructures of dimensions (N � k), where N
is the space dimension. It is known that to the closed
exterior di�erential forms of degree k there correspond
skew-symmetric tensors of rank k and to corresponding
dual forms there do the pseudotensors of rank (N �k),
where N is the space dimensionality. The pseudostruc-
tures correspond to such tensors, but only on the space
formed.

The properties of pseudostructures and closed
exterior forms. Forming �elds and manifolds

As mentioned before, the additional conditions, name-
ly, the conditions of degenerate transform, specify the
pseudostructure. But at every stage of the evolutionary
process it is realized only one element of pseudostruc-
ture, namely, a certain minipseudostructure. The addi-
tional conditions determine the direction (a derivative
that speci�es the minipseudostructure) on which the
evolutionary form di�erential vanishes. (However, in
this case the total di�erential of the evolutionary form
is nonzero). The closed exterior form is formed along
this direction.

While varying the evolutionary variable the mini-
pseudostructures form the pseudostructure.

The example of minipseudoctructure is the wave
front. The wave front is the eikonal surface (the lev-
el surface), i.e. the surface with a conservative quanti-
ty. The direction that speci�es the pseudostructure is
a connection between the evolutionary and spatial vari-
ables. It gives the rate of changing the spatial variables.
Such a rate is a velocity of the wave front translation.
While its translation the wave front forms the pseu-
dostructure.

The manifolds with closed metric forms are formed
by pseudostructures. They are obtained frommanifolds
with unclosed metric forms. In this case the initial
manifold (on which the evolutionary form is de�ned)
and the formed manifold with closed metric forms (on
which the closed exterior form is de�ned) are di�erent
spatial objects.
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It takes place a transition from the initial man-
ifold with unclosed metric form to the pseudostruc-
ture, namely, to the created manifold with closed met-
ric forms. Mathematically this transition (degenerate
transform) proceeds as a transition from one frame of
reference to another, nonequivalent, frame of reference.

The pseudostructures, on which the closed inexact
forms are de�ned, form the pseudomanifolds (integral
surfaces, pseudo-Riemann and pseudo-Euclidean spaces
are the examples of such manifolds). In this process the
dimensions of formed manifolds are connected with the
evolutionary form degree (This will be shown in sections
5 and 6).

To the transition from pseudomanifolds to metric
manifolds there corresponds the transition from closed
inexact di�erential forms to exact exterior di�erential
forms. (Euclidean and Riemann spaces are the exam-
ples of metric manifolds).

Here it is to be noted that the examples of pseudo-
metric spaces are the potential surfaces (the surfaces of
a simple layer, a double layer and so on). In these cases
a type of the potential surfaces is connected with the
above listed parameters.

The �elds of conservative quantities (the physical
�elds) are formed from closed exterior forms at the same
time when the manifolds are created from the pseudoc-
tructures. The speci�c feature of the manifolds with
closed metric forms that have been formed is that they
can carry some information.

Since the closed metric form is dual with respect to
some closed exterior di�erential form, the metric forms
cannot become closed by themselves, independently of
the exterior di�erential form. This proves that the man-
ifolds with closed metric forms are connected with the
closed exterior di�erential forms. This indicates that
the �elds of conservative quantities are formed from
closed exterior forms at the same time when the man-
ifolds are created from the pseudoctructures. The spe-
ci�c feature of the manifolds with closed metric forms
that have been formed is that they can carry some in-
formation.

That is, the closed exterior di�erential forms and
manifolds, on which they are de�ned, are mutually con-
nected objects. On the one hand, this shows duality of
these two objects (the pseudostructure and the closed
inexact exterior form), and, on the other hand, this
means that these objects constitute a uni�ed whole.
This whole is a new conjugated object. This is an
example of the di�erential and geometrical structure
(G-Structure). Such binary object can be named as
Bi-Structure.

Characteristics of the Bi-Structure

Since the closed exterior di�erential form that corre-
sponds to the arisen Bi-Structure was obtained from
the nonidentical relation that involves the evolutionary

form, it is evident that the Bi-Structure characteris-
tics must be connected with those of the evolutionary
form and of the manifold on which this form is de�ned,
with the conditions of degenerate transform and with
the values of commutators of the evolutionary form and
the manifold metric form.

While describing the mechanism of Bi-Structure
origination one can see that at the instant the Bi-
Structure originates there appear the following typical
functional expressions and quantities: (1) the condition
of degenerate transform, i.e. vanishing of the interior
commutator of the metric form; (2) vanishing of the
interior commutator of the evolutionary form; (3) the
value of the nonzero total commutator of the evolu-
tionary form that involves two terms, namely, the �rst
term is composed of the derivatives of the evolutionary
form coe�cients, and the second term is composed of
the derivatives of the coe�cients of the dual form that
is connected with the manifold (here we deal with a
value that the evolutionary form commutator assumes
at the instant of Bi-Structure origination). They deter-
mine the following characteristics of the Bi-Structure.
The conditions of degenerate transform, as it was said
before, determine the pseudostructures. The �rst term
of the evolutionary form commutator determines the
value of the discrete change (the quantum), which the
quantity conserved on the pseudostructure undergoes
at the transition from one pseudostructure to another.
The second term of the evolutionary form commutator
speci�es a characteristic that �xes the character of the
initial manifold deformation that took place before the
Bi-Structure arose. (Spin is such an example).

A discrete (quantum) change of a quantity proceeds
in the direction that is normal (more exactly, trans-
verse) to the pseudostructure. Jumps of the derivatives
normal to the potential surfaces are examples of such
changes.

Bi-Structure may carry a physical meaning. Such
bynary objects are the physical structures from which
the physical �elds are formed. (About this it will be
written below).

Transition from nonconjugated operators to
conjugated operators

The mathematical apparatus of the evolutionary di�er-
ential forms reveals the process of conjugating the op-
erators. A mutual variations of the evolutionary form
coe�cients (which have the algebraic nature) and the
manifold characteristics (which have the geometric na-
ture) and the realization of the degenerate transform
as well is the mechanism of this process. Hence one
can see that the process of conjugating the operators
is a mutual exchange between the physical and spatial
quantities (between the quantities of di�erent nature)
and the degenerate transform under additional condi-
tions.
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The evolutionary di�erential form is an unclosed
form, that is, it is the form whose di�erential is not
equal to zero. The di�erential of the exterior di�eren-
tial form equals zero. To the closed exterior form there
correspond conjugated operators, whereas to the evo-
lutionary form there correspond nonconjugated opera-
tors. The transition from the evolutionary form to the
closed exterior form is that from nonconjugated opera-
tors to conjugated ones. This is expressed mathemati-
cally as the transition from a nonzero di�erential (the
evolutionary form di�erential is nonzero) to a di�eren-
tial that equals zero (the closed exterior form di�er-
ential equals zero), and this is e�ected as a transition
from one coordinate system to another (nonequivalent)
coordinate system.

In conclusion of this section it is essential to em-
phasize the following. By comparing the exterior and
evolutionary forms one can see that they possess the
opposite properties. Yet it was shown that the evolu-
tionary di�erential forms generate the closed exterior
di�erential forms. This elucidates that the exterior and
evolutionary di�erential forms are the uni�ed whole.

4. Role of exterior and evolutionary
forms in mathematical physics

The role of exterior and evolutionary di�erential forms
in mathematical physics is due to the fact that the
mathematical apparatus of these forms make it possible
to keep track of the conjugacy of the equations that de-
scribe physical processes. The functional properties of
the solutions of di�erential equations are just depend on
whether or not the conjugacy conditions are satis�ed.
If these equations (or derivatives with respect to dif-
ferent variables) be not conjugated, then the solutions
to corresponding equations prove to be noninvariant:
they are functionals rather then functions. The realiza-
tion of the conditions (while varying variables), under
which the equations become conjugated ones, leads to
that the relevant solution becomes invariant. The tran-
sition to the invariant solution, which can be obtained
only with the help of evolutionary forms, describes the
various evolutionary transition.

In �eld theory only invariant solutions (to which the
closed exterior forms correspond), and the evolutionary
process is thereby not considered.

An investigation of di�erential equations, which de-
cribe physical processes, by means of the exterior and
evolutionary di�erential forms allows to understand a
mechanism of the evolutionary processes and origina-
tion of physical structures (of which the physical �elds
are formed) and explains such processes as 
uctuations,
pulsations, creation of massless particles, emergence of
waves, vortices and so on.
fIt can be shown that the exterior and evolution-

ary di�erential forms allow to investigate a conjugacy

of any di�erential equations. Ant this lies at the basis
of the qualitive theory of di�erential equations. The
conjugacy of equations points to integrability of equa-
tions.g

The basic idea of the investigation of the conjugacy
of di�erential equations can be clari�ed by the example
of the �rst-order partial di�erential equation.

Let

F (xi; u; pi) = 0; pi = @u=@xi (4:1)

be the partial di�erential equation of the �rst order.
Let us consider the functional relation

du = �; (4:2)

where � = pi dx
i (the summation over repeated indices

is implied). Here � = pi dxi is the di�erential form of
the �rst degree.

The left-hand side of this relation involves the di�er-
ential, and the right-hand side includes the di�erential
form � = pi dxi .

In the general case, from equation (4.1) it does not
follow (explicitly) that the derivatives pi = @u=@xi

that obey to the equation (and given boundary or initial
conditions of the problem) make up a di�erential. The
commutator of the di�erential form � de�ned as Kij =
@pj=@xi � @pi=@xj is not equal to zero. The form � =
pi dxi proves to be unclosed and is not a di�erential
like the left-hand side of relation (4.2). The functional
relation (4.2) appears to be nonidentical: the left-hand
side of this relation is a di�erential, but the right-hand
side is not a di�erential. The form � = pi dxi is an
example of the evolutionary form, whereas functional
relation (4.2) is an example of the evolutionary relation.

The nonidentity of functional relation (4.2) points
to a fact that without additional conditions the deriva-
tives of the initial equation do not make up a di�erential
(they are nonconjugated). This means that the corre-
sponding solution to the di�erential equation u will not
be a function of xi . It will depend on the commutator
of the form � , that is, it will be a functional.

To obtain the solution that is the function (i.e., the
derivatives of this solution format a di�erential), it is
necessary to add a closure condition for the form � =
pidxi and for the dual form (in the present case the
functional F plays a role of the form dual to � ) [2]:�

dF (xi; u; pi) = 0;
d(pi dxi) = 0:

(4:3)

If we expand the di�erentials, we get a set of homoge-
neous equations with respect to dxi and dpi (in the
2n-dimensional space { initial and tangential):8<

:
�
@F

@xi
+
@F

@u
pi

�
dxi +

@F

@pi
dpi = 0;

dpi dxi � dxi dpi = 0:

(4:4)
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The solvability conditions for this set (vanishing of the
determinant composed of the coe�cients at dxi , dpi )
have the form:

dxi

@F=@pi
=

�dpi
@F=@xi + pi@F=@u

: (4:5)

These conditions determine an integrating direction,
namely, a pseudostructure, on which the form � =
pi dxi turns out to be closed one, i.e. it becomes a
di�erential, and from relation (4.2) the identical re-
lation is produced. If conditions (4.5), that may be
called conjugacy conditions (integrability conditions),
are satis�ed, the derivatives constitute a di�erential
�u = pidxi = du (on the pseudostructure), and the
solution becomes a function. Just such solutions, name-
ly, functions on the pseudostructures formed by the in-
tegrating directions, are the so-called generalized solu-
tions [19]. The derivatives of the generalized solution
form the exterior form that is closed on the pseudostruc-
ture.

If conditions (4.5) are not satis�ed, that is, the
derivatives do not form a di�erential, the solution that
corresponds to such derivatives will depend on the dif-
ferential form commutator formatted by derivatives.
That means that the solution is a functional rather
then a function.

Since the functions that are the generalized solu-
tions are de�ned only on the pseudostructures, they
have discontinuities in derivatives in the directions that
are transverse to the pseudostructures. The order of
derivatives with discontinuities is equal to the exterior
form degree. If the form of zero degree is involved in
the functional relation, then the function itself, being a
generalized solution, will have discontinuities.

If we �nd the characteristics of equation (4.1), it
appears that conditions (4.5) are the equations for the
characteristics [14]. That is, the characteristics are the
examples of the pseudostructures on which the deriva-
tives of the di�erential equation form the closed forms
and the solutions prove to be the functions (general-
ized solutions). (The characteristic manifolds of equa-
tion (4.1) are the pseudostructures � on which the form
� = pidxi becomes a closed form: �� = du� ).

Here it is worth noting that the coordinates of the
equations for characteristics are not identical to the
independent coordinates of the initial space on which
equation (4.1) is de�ned. The transition from the ini-
tial space to the characteristic manifold appears to be
a degenerate transform, namely, the determinant of the
set of equations (4.4) becomes zero. The derivatives of
equation (4.1) are transformed from the tangent space
to the cotangent one.

Similar functional properties have the solutions to
all di�erential equations and a system of partial di�er-
ential equations.

Di�erential equations of mathematical physics,
which describe physical processes, are those on which

the invariance requirements (conjugacy conditions) are
not inposed. Therefore they can have solutions that are
functionals (their derivatives do not make up a di�er-
ential). The solutions prove to be exact (generalized,
not functionals) only under realization of the addition-
al requirements, namely, the conditions of degenerate
transforms: vanishing the determinants, Jacobians and
so on, that de�ne the integral surfaces. The characteris-
tic manifolds, the envelopes of characteristics, singular
points, potentials of simple and double layers, residues
and others are the examples of such surfaces.

Since the closed forms correspond to the physical
structures that form the physical �elds, it is evident
that only the equations with additional conditions (the
integrability conditions) can be the equations of the
�eld theory.

Let us consider how such an equation can be ob-
tained and to do so we return to equation (4.1).

Assume that it does not explicitly depend on u and
it is solved with respect to some variable, for example
t , that is, it has the form of

@u

@t
+ E(t; xj; pj) = 0; pj =

@u

@xj
: (4:6)

Then integrability conditions (4.5) (the closure condi-
tions of the di�erential form � = pidxi and the cor-
responding dual form) can be written as (in this case
@F=@p1 = 1)

dxj

dt
=

@E

@pj
;

dpj
dt

= � @E
@xj

: (4:7)

These are the characteristic relations (equations of
characteristics) for equation (4.6). As it is well known,
the canonical relations have just such a form.

Equation (4.6) provided with the supplementary
conditions, namely, the canonical relations (4.7), is
called the Hamilton-Jacobi equation [14]. The equa-
tions of �eld theory

@s

@t
+H

�
t; qj;

@s

@qj

�
= 0;

@s

@qj
= pj (4:8)

belong to this type. Here s is the �eld function for
the action functional S =

R
Ldt . L is the Lagrange

function, H is the Hamilton function: H(t; qj; pj) =
pj _qj � L , pj = @L=@ _qj . The closed form ds =
�H dt + pj dqj (the Poincare invariant) corresponds to
equation (4.8).

Here the degenerate transform is a transition from
the Lagrange function to the Hamilton function. The
equation for the Lagrange function, that is the Euler
variational equation, was obtained from the condition
�S = 0, where S is the action functional. In the real
case, when forces are nonpotential or couplings are non-
holonomic, the quantity �S is not a closed form, that
is, d �S 6= 0. But the Hamilton function is obtained



204 L.I. Petrova

from the condition d �S = 0 which is the closure condi-
tion for the form �S . The transition from the Lagrange
function L to the Hamilton function H (the transition
from variables qj; _qj to variables qj; pj = @L=@ _qj ) is
the transition from the tangent space, where the form
is unclosed, to the cotangent space with a closed form.
One can see that this transition is a degenerate one.

In quantummechanics (where to the coordinates qj ,
pj the operators are assigned) the Schr}odinger equa-
tion [20] serves as an analog to equation (4.8), and the
Heisenberg equation serves as an analog to the relevant
equation for the canonical relation integral. Whereas
the closed exterior di�erential form of zero degree (the
analog to the Poincare invariant) corresponds to the
Schr}odinger equation, the closed dual form corresponds
to the Heisenberg equation.

The invariant �eld theories used only nondegener-
ate transformations that conserve the di�erential. By
the example of the canonical relations it is possible to
show that nondegenerate and degenerate transforma-
tions are connected. The canonical relations in the in-
variant �eld theory correspond to nondegenerate tan-
gent transformations. At the same time, the canonical
relations coincide with the characteristic relation for
equation (4.8), which the degenerate transformations
correspond to. The degenerate transformation is a tran-
sition from the tangent space (qj ; _qj)) to the cotangent
(characteristic) manifold (qj; pj ). On the other hand,
the nondegenerate transformation is a transition from
one characteristic manifold (qj ; pj ) to the other char-
acteristic manifold (Qj ; Pj ).

The investigations conducted show that one must
separate out two types of di�erential equations, namely,
di�erential equations, that describe physical processes,
and the invariant equations of the �eld theory, that de-
scribe physical structures forming physical �elds. As
the investigations conducted show these equations are
connected between themselves. Invariant equations are
obtained from equations that describe physical process-
es on which there are imposed additional conditions,
namely, the conditions of existence of closed forms (in-
variants).

A connection of two types of equations of mathe-
matical physics elucidates a relation between physical
�elds and material media. Di�erential equations that
describe physical processes are equations of the conser-
vation laws for material media whereas invariant equa-
tions of the �eld theory are equations (more presicely,
relations) of the conservation laws for physical �elds.
Below with it will be shown that material media gen-
erate physical �elds. And this process is controlled by
the conservation laws.

5. Conservation laws

One has to distinguish two types of the conservation
laws that for convenience can be called the exact con-
servation laws and the balance ones.

Exact conservation laws

The exact conservation laws are those that state the ex-
istence of conservative physical quantities or objects.
The exact conservation laws are related to physical
�elds. fThe physical �elds [21] are a special form of
the substance, they are carriers of various interactions
such as electromagnetic, gravitational, wave, nuclear
and other kinds of interactions.g

The closed exterior di�erential forms correspond to
the exact conservation laws. Indeed, from the closure
conditions of the exterior di�erential form (see Section
1, formulas (1.4), (1.8), (1.9)) it is evident that a closed
di�erential form is a conservative quantity. In this case
the closed inexact di�erential form and the correspond-
ing dual form describe a conservative object, namely,
there is a conservative quantity only on some pseu-
dostructure � . From this one can see that the closed
exterior di�erential form can correspond to the exact
conservation law.

The closure conditions for the exterior di�erential
form (d� �p = 0) and the dual form (d� ��p = 0)
are mathematical expressions of the exact conservation
law.

In section 1 and 3 it was mentioned that the pseu-
dostructure and the closed exterior form de�ned on
the pseudostructure make up a binary structure (Bi-
Structure). It is evident that such a structure does
correspond to the exact conservation law.

It is such structures (pseudostructures with a con-
servative physical quantity) that corresponding to exact
conservation law that are the physical structures from
which physical �elds are formed. The problem of how
these structures arise and how physical �elds are formed
will be discussed below.

Equations for the physical structures (d� �p = 0,
d� ��p = 0) turn out to coincide with the mathematical
expression for the exact conservation law.

The mathematical expression for the exact conser-
vation law and its connection with physical �elds can
be schematically written in the following manner�

d��p = 0
d���p = 0

7!
�
�p
��p

|

| physical structures 7! physical �elds

It is seen that the exact conservation law is that for
physical �elds.

It should be emphasized that the closed inexact
forms correspond to the physical structures that form
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physical �elds. The exact forms correspond to the ma-
terial system elements. (About this it will be said
below).

It can be shown that the �eld theories, i.e. the the-
ories that describe physical �elds, are based on the in-
variant and metric properties of the closed exterior dif-
ferential and dual forms that correspond to exact con-
servation laws.

Balance conservation laws

The balance conservation laws are those that establish
the balance between the variation of a physical quan-
tity and the corresponding external action. These are
the conservation laws for the material systems (mate-
rial media).
fA material system is a variety of elements which

have internal structure and interact to one another. As
examples of material systems it may be thermodynam-
ic, gas dynamical, cosmic systems, systems of elemen-
tary particles and others. The physical vacuum in its
properties may be regarded as an analogue of the ma-
terial system that generates some physical �elds. Any
material media are such material systems. Examples of
elements that constitute the material system are elec-
trons, protons, neutrons, atoms, 
uid particles, cosmic
objects and othersg.

The balance conservation laws are the conservation
laws for energy, linear momentum, angular momentum,
and mass.

In the integral form the balance conservation laws
express the following [22]: a change of a physical quanti-
ty in an elementary volume over a time interval is coun-
terbalanced by the 
ux of a certain quantity through
the boundary surface and by the action of sources. Un-
der transition to the di�erential expression the 
uxes
are changed by divergences.

The equations of the balance conservation laws are
di�erential (or integral) equations that describe a vari-
ation of functions corresponding to physical quantities
[16,22-24].

It appears that, even without knowledge of the con-
crete form of these equations, with the help of the di�er-
ential forms one can see speci�c features of these equa-
tions that elucidate the properties of the balance con-
servation laws. To do so it is necessary to study the
conjugacy (consistency) of these equations.

Equations are conjugate if they can be contracted
into identical relations for the di�erential, i.e. for a
closed form.

Let us analyze the equations that describe the bal-
ance conservation laws for energy and linear momen-
tum.

We introduce two frames of reference: the �rst is
an inertial one (this frame of reference is not connected
with the material system), and the second is an accom-
panying one (this system is connected with the man-

ifold built by the trajectories of the material system
elements). The energy equation in the inertial frame of
reference can be reduced to the form:

D 

Dt
= A1; (5:1)

where D=Dt is the total derivative with respect to
time,  is the functional of the state that speci�es the
material system, A1 is the quantity that depends on
speci�c features of the system and on external energy
actions onto the system. fThe action functional, en-
tropy,wave function can be regarded as examples of the
functional  . Thus, the equation for energy presented
in terms of the action functional S has a similar form:
DS=Dt = L , where  = S , A1 = L is the Lagrange
function. In mechanics of continuous media the equa-
tion for energy of an ideal gas can be presented in the
form [23]: Ds=Dt = 0, where s is entropy. In this case
 = s , A1 = 0. It is worth noting that the examples
presented show that the action functional and entropy
play the same role.g

In the accompanying frame of reference the total
derivative with respect to time is transformed into the
derivative along the trajectory. Equation (5.1) is now
written in the form

@ 

@�1
= A1; (5:2)

here �1 is the coordinate along the trajectory.
In a similar manner, in the accompanying frame of

reference the equation for linear momentum appears to
be reduced to the equation of the form

@ 

@��
= A� ; � = 2; ::: (5:3)

where �� are the coordinates in the direction normal
to the trajectory, A� are the quantities that depend on
the speci�c features of the system and external force
actions.

Eqs. (5.2), (5.3) can be convoluted into the relation

d = A� d�
�; (� = 1; �); (5:4)

where d is the di�erential expression d =
= (@ =@��)d�� .

Relation (5.4) can be written as

d = !; (5:5)

here ! = A� d�� is the di�erential form of the �rst
degree.

Since the balance conservation laws are evolution-
ary ones, the relation obtained is also an evolutionary
relation.

Relation (5.5) was obtained from the equation of the
balance conservation laws for energy and linear momen-
tum. In this relation the form ! is that of the �rst de-
gree. If the equations of the balance conservation laws
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for angular momentum be added to the equations for
energy and linear momentum, this form in the evolu-
tionary relation will be the form of the second degree.
And in combination with the equation of the balance
conservation law of mass this form will be the form of
degree 3.

Thus, in the general case the evolutionary relation
can be written as

d = !p; (5:6)

where the form degree p takes the values p = 0; 1; 2; 3..
(The evolutionary relation for p = 0 is similar to that
in the di�erential forms, and it was obtained from the
interaction of energy and time.)

In relation (5.5) the form  is the form of zero de-
gree. And in relation (5.6) the form  is the form of
(p� 1) degree.

Let us show that the evolutionary relation obtained
from the equation of the balance conservation laws
proves to be nonidentical.

To do so we shall analyze relation (5.5).
A relation may be identical one if this is a relation

between measurable (invariant) quantities or between
observable (metric) objects, in other words, between
quantities or objects that are comparable.

In the left-hand side of evolutionary relation (5.5)
there is a di�erential that is a closed form. This form
is an invariant object. Let us show that the di�erential
form ! in the right-hand side of relation (5.5) is not
an invariant object because in real processes this form
proves to be unclosed.

For the form to be closed the di�erential of the form
or its commutator must be equal to zero (the elements
of the form di�erential are equal to the components of
its commutator).

Let us consider the commutator of the form ! =
A�d�� . The components of the commutator of such a
form (as it was pointed above) can be written as follows:

K�� =

�
@A�

@��
� @A�

@��

�
(5:7)

(here the term connected with the nondi�erentiability
of the manifold has not yet been taken into account).

The coe�cients A� of the form ! have been ob-
tained either from the equation of the balance conser-
vation law for energy or from that for linear momentum.
This means that in the �rst case the coe�cients depend
on the energetic action and in the second case they de-
pend on the force action. In actual processes energetic
and force actions have di�erent nature and appear to be
inconsistent. The commutator of the form ! construct-
ed from the derivatives of such coe�cients is nonzero.
This means that the di�erential of the form ! is nonze-
ro as well. Thus, the form ! proves to be unclosed and
is not a measurable quantity.

This means that the evolutionary relation involves
an unmeasurable term. Such a relation cannot be an

identical one. (In the left-hand side of this relation it
stands a di�erential, whereas in the right-hand side it
stands an unclosed form that is not a di�erential.)

Hence, without knowledge of a particular expression
for the form ! , one can argue that for actual process-
es the evolutionary relation proves to be nonidentical
because of inconsistency of the external action.

The nonidentity of the evolutionary relation means
that equations of the balance conservation laws turn out
to be nonconjugated (thus, if from the energy equation
we obtain the derivative of  in the direction along the
trajectory and from the momentum equation we �nd
the derivative of  in the direction normal to the tra-
jectory and then we to calculate their mixed derivatives,
then from the condition that the commutator of the
form ! is nonzero it follows that the mixed derivatives
prove to be noncommutative). One cannot convolute
them into an identical relation and obtain a di�eren-
tial.

The nonconjugacy of the balance conservation law
equations re
ects the properties of the balance conser-
vation laws that have a governing importance for the
evolutionary processes, namely, their noncommutativi-
ty.

6. Evolutionary processes in material
media and origination of physical
structures

It was shown above that the evolutionary relation that
was obtained from the balance conservation law equa-
tions proves to be nonidentical. This points to the non-
commutativity of the balance conservation laws. By
analyzing the behavior of the nonidentical evolutionary
relation one can understand to what result the noncom-
mutativity of the balance conservation laws leads.

Let us consider evolutionary relation (5.6).
In the left-hand side of the evolutionary relation

there is the functional expression d that determines
the state of the material system, and in the right-hand
side there is the form !p whose coe�cients depend on
external actions and the material system characteris-
tics.

The evolutionary relation gives a possibility to de-
termine either presence or absence of the di�erential
(the closed form). And this allows us to recognize
whether the material system state is in equilibrium, in
local equilibrium or not in equilibrium. If it is possible
to determine the di�erential d (the state di�erential)
from the evolutionary relation, this indicates that the
system is in equilibrium or locally equilibrium state.
And if the di�erential cannot be determined, then this
means that the system is in a nonequilibrium state.

It is evident that if the balance conservation laws be
commutative, the evolutionary relation would be iden-
tical and from that it would be possible to get the di�er-
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ential d , this would indicate that the material system
is in the equilibrium state.

However, as it has been shown, in real processes the
balance conservation laws are noncommutative. The
evolutionary relation is not identical and from this re-
lation one cannot get the di�erential d . This means
that the system state is nonequilibrium. It is evident
that a magnitude of internal force, which gives rise to
the nonequilibrium, is described by the evolutionary
form commutator.

Selfvariation of nonequilibrium state of
material system. (Selfvariation of the
evolutionary relation)

What does the material system nonequilibrium indi-
cated by the nonidentity of the evolutionary relation
results in?

As it was shown in Section 3, if the relation is evo-
lutionary and nonidentical, it is a selfvarying relation,
that is, a change of one object in the relation leads to
a change of the other object, and in turn a change of
the latter leads to a change of the former and so on.
Such a speci�c feature of the evolutionary relation ex-
plains the particulars of the material system, namely,
the selfvariation of its nonequilibrium state.

The selfvariation mechanism of the nonequilibrium
state of the material system can be understood if ana-
lyze the properties of the evolutionary form commuta-
tor.

The evolutionary form in the evolutionary relation is
de�ned on the accompanyingmanifold that for real pro-
cesses appears to be the deformable manifold because it
is formed simultaneously with a change of the materi-
al system state and depends on the physical processes.
Such a manifold cannot be a manifold with closed met-
ric forms. Hence, as it was already noted in Section 3,
the term containing the characteristics of the manifold
will be included into the evolutionary form commuta-
tor in addition to the term connected with derivatives
of the form coe�cients. The interaction between these
terms of di�erent nature describes a mutual change of
the state of the material system.

The emergence of the second term under deforma-
tion of the accompanying manifold can only change
the commutator and cannot make it zero (because the
terms of the commutator have di�erent nature). In
the material system the internal force will continue to
act even in the absence of external actions. The fur-
ther deformation (torsion) of the manifold will go on.
This leads to a change of the metric form commuta-
tor, produces a change of the evolutionary form and
its commutator and so on. Such a process is governed
by the nonidentical evolutionary relation and, in turn,
produces a change of the evolutionary relation.

The process of selfvariation of the commutator con-
trolled by the nonidentical evolutionary relation speci-

�es a change of the internal force that acts in the ma-
terial system. This points to a change of the mate-
rial system state. But the material system state re-
mains nonequilibrium in this process because the inter-
nal forces do not vanish due to the evolutionary form
commutator remaining nonzero.

At this point it should be emphasized that such
selfvariation of the material system state proceeds un-
der the action of internal (rather than external) forces.
That will go on even in the absence of external forces.
That is, the selfvariation of the nonequilibrium state of
the material system takes place.

It is the selfvariation of the nonidentical evolution-
ary relation obtained from the balance conservation
laws for material systems that describes the selfvara-
tion of the nonequilibrium state of material system.

Here it should be noted that in a real physical pro-
cess the internal forces can be increased (due to the
selfvariation of the nonequilibrium state of the material
system). This can lead to the development of instabil-
ity in the material system [25]. fFor example, this was
pointed out in the works by Prigogine [26]. \The excess
entropy" in his works is analogous to the commutator
of a nonintegrable form for the thermodynamic system.
\Production of excess entropy" leads to the develop-
ment of instabilityg.

Transition of the material system into a locally
equilibrium state. (Degenerate transform)

Now the question arises whether the material system
can got rid of the internal force and transfer into the
equilibrium state?

The state of material system is equilibrium one if
the state di�erential exists.

The state di�erential is included into the nonidenti-
cal evolutionary relation. But one cannot get the state
di�erential from nonidentical relation. This points to
that the material system cannot come to the equilib-
rium state. However, as it was shown in Section 3,
under degenerate transform the identical relation can
be obtained from the nonidentical evolutionary rela-
tion. From such a relation one can obtain the state
di�erential. But to this di�erential there corresponds
the inexact closed exterior form. this means that the
state di�erential acts only locally. The availability of
such state diferential points not to the equilibriun state
but to the locally equilibrium state of material system.
Under this condition the total state of material system
remains to be nonequilibrium.

How does the transition of the material system from
the nonequilibrium state to a locally equilibrium one go
on?

Let us consider nonidentical evolutionary relation
(5.6).

As it was shown in Section 3, from the nonidentical
evolutionary relation it can be obtained the identical
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relation if from the evolutionary unclosed relation the
inexact closed exterior form can be obtained.

Since the evolutionary di�erential form !p is un-
closed, the commutator, and hence the di�erential, of
this form is nonzero. That is,

d!p 6= 0: (6:1)

The unclosed inexact exterior form, which can be ob-
tained from the evolutionary form, must satisfy the clo-
sure conditions: �

d�!p = 0;
d��!p = 0:

(6:2)

That is, the di�erential of this form must be equal to
zero. It is evident that a passage from condition (6.1) to
condition (6.2) is allowed only as the degenerate trans-
form. If such a transform takes place, on the pseu-
dostructure � evolutionary relation (5.6) transforms in-
to the relation

d� = !p�; (6:3)

which proves to be the identical relation. Indeed, since
the form !p� is a closed one, on the pseudostructure it
turns out to be a di�erential of some di�erential form.
In other words, this form can be written as !p� = d�� .
Relation (6.3) is now written as

d� = d��:

There are di�erentials in the left-hand and right-hand
sides of this relation. This means that the relation is
an identical one.

It is from such a relation that one can �nd the state
di�erential d� .

The emergence of the di�erential d� indicates that
the material system changes into the locally equilibrium
state. But in this case the total state of the material
system turns out to be nonequilibrium.

Here the following detail should be taken into ac-
count. The evolutionary di�erential form is de�ned on
the accompanying manifold. The evolutionary relation
has been obtained under the condition that the coordi-
nate frame is tied to the accompanying manifold. This
coordinate system is not an inertial or locally inertial
system because the metric forms of the accompanying
manifold are not closed ones. Condition (6.1) relates to
the system tied to the accompanying manifold, whereas
condition (6.2) may relate only to the coordinate system
that is tied to a pseudostructure. The second condition
in formula (6.2) being the equation for the pseudostruc-
ture points to this fact. It is only the locally inertial
coordinate system that can be such a coordinate sys-
tem. From this it follows that the degenerate transform
is realized as the transition from the accompanying non-
inertial coordinate system to the locally inertial that.

To the degenerate transform it must correspond
vanishing of some functional expressions. As it was

already mentioned in Section 3, such functional ex-
pressions may be Jacobians, determinants, the Poisson
brackets, residues and others. Vanishing of these func-
tional expressions is the closure condition for a dual
form.

The conditions of degenerate transform are connect-
ed with symmetries that can be obtained from the coef-
�cients of evolutionary and dual forms and their deriva-
tives. Since the evolutionary relation describes the ma-
terial systems and the coe�cients of the form !p de-
pend on the material system characteristics, it is ob-
vious that the additional condition (the condition of
degenerate transform) has to be due to the materi-
al system properties. This may be, for example, the
availability of any degrees of freedom in the system.
The translational degrees of freedom, internal degrees
of freedom of the system elements, and so on can be
examples of such degrees of freedom.

The availability of the degrees of freedom in the ma-
terial system indicates that it is allowed the degenerate
transform, which, in turns, allows the state of the ma-
terial systems to be transformed from a nonequilibrium
state to a locally equilibrium state. But, for this to take
place in reality it is necessary that the additional con-
ditions connected with the degrees of freedom of the
material system be realized. It is selfvariation of the
nonequilibrium state of the material system described
by the selfvarying evolutionary relation that could give
rise to realization of the additional conditions. This can
appear only spontaneously because it is caused by inter-
nal (rather than external) reasons (the degrees of free-
dom are the characteristics of the system rather than
of external actions).

7. The origination of the physical
structures. Formation of physical
�elds and manifolds. The causality.

The identical relation (6.3) obtained from the noniden-
tical evolutionary relation (under degenerate trans-
form) integrates the state di�erential and the closed
inexact exterior form. The availability of the state
di�erential indicates that the material system state be-
comes a locally equilibrium state (that is, the local
domain of the system under consideration changes into
the equilibrium state). The availability of the exterior
closed inexact formmeans that the physical structure is
present. This shows that the transition of material sys-
tem into the locally equilibrium state is accompanied
by the origination of physical structures.

Since closed inexact exterior forms corresponding to
physical structure are obtained from the evolutionary
relation for the material system, it follows that physical
structures are generated by the material systems. (This
is controlled by the conservation laws.)

In this manner the crated physical structures are
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connected with the material system, its elements, its
local domains.

In the material system origination of a physical
structure reveals as a new measurable and observable
formation that spontaneously arises in the material
system. fAs the examples it can be 
uctuations, pulsa-
tions, waves, vortices, creating massless particles.g.

In the physical process this formation is sponta-
neously extracted from the local domain of the materi-
al system and so it allows the local domain of material
system to get rid of an internal force and come into a
locally equilibrium state.

The formation created in a local domain of the ma-
terial system (at the cost of an unmeasurable quantity
that acts in the local domain as an internal force) and
liberated from that, begins acting onto the neighboring
local domain as a force. This is a potential force, this
fact is indicated by the double meaning of the closed ex-
terior form (on the one hand, a conservative quantity,
and, on other hand, a potential force). (This action was
produced by the material system in itself, and therefore
this is a potential action rather than an arbitrary one).
The transition of the material system from nonequilib-
rium into a locally equilibrium state (which is indicat-
ed by the formation of a closed form) means that the
unmeasurable quantity described by the nonzero com-
mutator of the nonintegrable di�erential form !p , that
acts as an internal force, transforms into the measur-
able quantity. It is evident that it is just the measurable
quantity that acts as a potential force. In other words,
the internal force transforms into a potential force.

The neighboring domain of the material system
works over this action that appears to be external with
respect to that. If in the process the conditions of con-
jugacy of the balance conservation laws turn out to be
satis�ed again, the neighboring domain will create a
formation by its own, and this formation will be ex-
tracted from this domain. In such a way the formation
can move relative to the material system. (Waves are
the example of such motions).

Characteristics of a created formation:
intensity, vorticity, absolute and relative speeds
of propagation of the formation.

Analysis of the formation and its characteristics allows
a better understanding of the speci�c features of phys-
ical structures.

It is evident that the characteristics of the forma-
tion, as well as those of the created physical structure,
are determined by the evolutionary form and its com-
mutator and by the material system characteristics.

The following correspondence between the charac-
teristics of the formations emerged and characteristics
of the evolutionary forms, of the evolutionary form com-
mutators and of the material system is established:

1) an intensity of the formation (a potential force)

$ the value of the �rst term in the commutator of a
nonintegrable form at the instant of the formation is
created;

2) vorticity $ the second term in the commutator
that is connected with the metric form commutator;

3) an absolute speed of propagation of the created
formation (the speed in the inertial frame of reference)
$ additional conditions connected with degrees of free-
dom of the material system;

4) a speed of the formation propagation relative to
the material system $ additional conditions connected
with degrees of freedom of the material system and the
velocity of the local domain elements.

Characteristics of physical structures

Analysis of formations originated in the material sys-
tem that correspond to physical structures allows us to
clarify some properties of physical structures.

The observed formation and the physical structure
are not identical objects. If the wave be such a for-
mation, the structures formed by the wave front ele-
ments while its translation are examples of the physical
structure. (In this case the wave element is a minipseu-
dostructure. Under this translation such element forms
a line or some surface, which are examples of the pseu-
dostructure.) The observed formations are assigned
to material systems, and the physical structures do to
physical �elds. In this case they are mutually connect-
ed. As it was already noted, the characteristics of phys-
ical structure, as well as the characteristics of the for-
mation, are determined by the evolutionary form and
its commutator and by the material system character-
istics.

The originated physical structure is a realized pseu-
dostructure and a corresponding inexact closed exterior
form. What determines the characteristics of these ob-
jects?

The equation of the pseudostructure is obtained
from the condition of degenerate transform and is dic-
tated by a degree of freedom of material system. The
pseudostructure is connected with the absolute speed
of propagation of the created formation (see point 3 in
the preceding section).

A closed exterior form corresponding to a physical
structure is a conservative quantity that the state di�er-
ential corresponds to. The di�erentials of entropy, ac-
tion, potential and others are the examples of such dif-
ferentials. These conservative quantities describe cer-
tain charges.

A physical structure possesses two more characteris-
tics. This is connected with the fact that inexact closed
forms correspond to these structures. Under transition
from one structure to another the conservative quanti-
ty corresponding to the closed exterior form discretely
changes, and the pseudostructure also changes discrete-
ly.
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Discrete changes of the conservative quantity and
pseudostructure are determined by the value of the evo-
lutionary form commutator, which the commutator has
at the instant when the physical structure originates.
The �rst term of the evolutionary form commutator
obtained from the derivatives of the evolutionary form
coe�cients controls the discrete change of the conser-
vative quantity. As a corresponding characteristics of
the created formation it serves the intensity of created
formation (see point 1). The second term of the evolu-
tionary form commutator obtained from the derivatives
of the metric form coe�cients of the initial manifold
controls the pseudostructure change. Spin is the exam-
ple of the second characteristics. As a corresponding
characteristics of the created formation it serves the
vorticity of created formation (see point 2). Spin is a
characteristics that determines a character of the man-
ifold deformation before origination of the quantum.
(The spin value depends on the form degree.)

A discrete change of the conservative quantity and
that of the pseudostructure produce the quantum that
is obtained while going from one structure to anoth-
er. The evolutionary form commutator formed at the
instant of the structure origination determine charac-
teristics of this quantum.

Breaks of the derivatives of the potential along the
direction normal to the potential surface, breaks of the
derivative in transition throughout the characteristic
surfaces and in transition throughout the wave front,
and others are the examples of such discrete changes.

The duality of the closed inexact form as a conser-
vative quantity and as a potential force shows that the
potential forces are the action of formations correspond-
ing to the physical structures onto the material system
elements.

Here the following should be pointed out. The phys-
ical structures are generated by local domains of the
material system. They are the elementary physical
structures. By combining with one another they can
form the large-scale structures and physical �elds.

Classi�cation of physical structures. Formation
of physical �elds. (Parameters of the closed
and dual forms)

Since the physical structures are generated by numerous
local domains of the material system and at numerous
instants of realizing various degrees of freedom of the
material system, it is evident that they can generate
�elds. In this manner physical �elds are formatted. To
obtain the physical structures that form a given physi-
cal �eld one has to examine the material system corre-
sponding to this �eld and the appropriate evolutionary
relation. In particular, to obtain the thermodynam-
ic structures (
uctuations, phase transitions, etc) one
has to analyze the evolutionary relation for the ther-
modynamic systems, to obtain the gas dynamic ones

(waves, jumps, vortices, pulsations) one has to employ
the evolutionary relation for gas dynamic systems, for
the electromagnetic �eld one must employ a relation
obtained from equations for charged particles.

Closed forms that correspond to physical structures
are generated by the evolutionary relation having the
parameter p that de�nes a number of interacting bal-
ance conservation laws, that ranges from 0 to 3. There-
fore, the physical structures can be classi�ed by the pa-
rameter p . The other parameter is a degree of closed
forms generated by the evolutionary relation. As it was
shown above, the evolutionary relation of degree p can
generate the closed forms of degree 0 � k � p . There-
fore, physical structures can be classi�ed by the param-
eter k as well.

In addition, closed exterior forms of the same de-
gree realized in spaces of di�erent dimensions prove to
be distinguishable because the dimension of the pseu-
dostructures, on which the closed forms are de�ned, de-
pends on the space dimension. As a result, the space di-
mension also speci�es the physical structures. This pa-
rameter determines the properties of the physical struc-
tures rather than their type.

What is implied by the concept \space"?
While deriving the evolutionary relation two frames

of reference were used and, correspondingly, two spatial
objects . The �rst frame of reference is the inertial one
that is connected with the space where the material
system is situated and is not directly connected with
the material system. This is an inertial space, it is a
metric space. (As it will be shown below, this space is
also formed by the material system itself.) The second
frame of reference is the proper one, it is connected
with the accompanying manifold, which is not a metric
manifold.

If the dimension of the initial inertial space is n ,
then while generating closed forms of sequential degrees
k = p , k = p � 1, . . . , k = 0 the pseudostructures of
dimensions (n + 1 � k): 1, . . . , n + 1 are obtained.
As a result of transition to the exact closed form of ze-
ro degree the metric structure of the dimension n + 1
is obtained. Under the in
uence of an external action
(and in the presence of degrees of freedom) the material
system connected with the accompanying manifold can
transfer the initial inertial space into the space of the
dimension n+1. fIt is known that the skew-symmetric
tensors of the rank k correspond to the closed exteri-
or di�erential forms, and the pseudotensors of the rank
(N � k), where N is the space dimension, correspond
to the relevant dual forms. The pseudostructures cor-
respond to such tensors, but on the space formed with
the dimension n + 1. That is, N = n + 1g.

Hence, from the analysis of the evolutionary rela-
tion one can see that the type and the properties of the
physical structures (and, accordingly, of physical �elds)
for a given material system depend on a number of in-
teracting balance conservation laws p , on the degree of
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realized closed forms k , and on the space dimension.
The connection between the �eld theory equations

and closed exterior forms presented in Section 1 shows
that it is possible to classify physical �elds according to
the degree of exterior di�erential form. But within the
framework of only exterior di�erential forms one cannot
understand how this classi�cation is explained. This
can be elucidated only by application of evolutionary
di�erential forms.

By introducing a classi�cation with respect to p ,
k , and a space dimension we can understand the in-
ternal connection of various physical �elds and inter-
actions. So one can see a correspondence between the
degree k of the closed forms realized and the type of
interactions. Thus, k = 0 corresponds to the strong
interaction, k = 1 corresponds to the weak interaction,
k = 2 corresponds to the electromagnetic interaction,
and k = 3 corresponds to the gravitational interaction.

Causality

The mathematical apparatus of evolutionary di�eren-
tial forms describing the balance conservation laws in
the material systems explains the causality of the evo-
lutionary processes in material systems, which lead to
emergence of physical structures.

The evolutionary process in the material system and
the emergence of physical structures can take place, if

1) the material system is subjected to an external
action (the evolutionary form commutator in the evolu-
tionary relation obtained from the balance conservation
laws is nonzero),

2) a material system possesses the degrees of free-
dom (there are the conditions of degenerate transform,
under which from the nonidentical evolutionary relation
an identical relation is obtained),

3) the degrees of freedom of the material system
have to be realized, that is possible only under selfvari-
ations of the nonequilibrium state of material system
(the conditions of the degenerate transform have to be
satis�ed, this is possible under selfvariation of the non-
identical evolutionary relation).

If these conditions (causes) are ful�lled, in the ma-
terial system physical structures arise (this is indicated
by the presence of closed inexact form obtained from the
identical relation).

It is these structures that form physical �elds.
Note that to each physical �eld it is assigned its own

material system. The question of what physical system
corresponds to a particular physical �eld is still an open
question. Examples of such material systems are the
thermodynamic, gas dynamical, the system of charged
particles, cosmological systems, and so on. Maybe, for
elementary particles the physical vacuum is such a sys-
tem.

The evolutionary process may lead to creation of
elements of its own material system (while obtaining the

exact form of zero degree). (In this case the numbers
are the analog of dual forms).

The emergence of physical structures in the evolu-
tionary process proceeds spontaneously and is manifest-
ed as an emergence of certain observable formations. In
this manner the causality of emerging various observ-
able formations in material media is explained. Such
formations and their manifestations are 
uctuations,
turbulent pulsations, waves, vortices, creating massless
particles and others.

Here the role of the conservation laws in evolu-
tionary processes should be emphasized once again.
The noncommutativity of the balance conservation laws
leads to the nonequilibrium state of the material sys-
tem (subjected to external actions). The interaction of
the noncommutative balance conservation laws controls
the process of selfvarying the nonequilibrium state of
the material system that leads to the realization of the
degrees of freedom of the material system. This allows
the material system to transform into the locally equi-
librium state, which is accompanied by emergence of
physical structures. The exact conservation laws cor-
respond to the physical structures. Here one can see
a connection between the balance and exact conserva-
tion laws. The physical structures that correspond to
the exact conservation laws are produced by material
system in the evolutionary processes based on the in-
teraction of the noncommutative balance conservation
laws [31].

The noncommutativity of the balance conservation
laws and their controlling role in the evolutionary pro-
cesses, that are accompanied by emerging physical struc-
tures, practically have not been taken into account in
the explicit form anywhere. The mathematical appa-
ratus of evolutionary di�erential forms enables one to
take into account and describe these points.

The existing �eld theories that are invariant ones
are based on some postulates. The investigation per-
formed allows us to make the following conclusion. The
postulates, which lie at the basis of the existing �eld
theories, correspond to the statement about the conju-
gacy of the balance conservation laws for material sys-
tems that generate physical structures forming physical
�elds.

It can be shown that any material system and any
physical �eld is subjected to the above described regu-
larities, which were obtained with thw help of the math-
ematical apparatus of the exterior and evolutionary dif-
ferential forms. Let us consider some material systems
and physical �elds.

1. The thermodynamic systems
The thermodynamics is based on the �rst and sec-

ond principles of thermodynamics that were introduced
as postulates [15]. The �rst principle of thermodynam-
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ics, which can be written in the form

dE + dw = �Q (7:1)

follows from the balance conservation laws for energy
and linear momentum (but not only from the conserva-
tion law for energy). This is analogous to the evolution-
ary relation for the thermodynamic system. Since �Q
is not a di�erential, relation (7.1) which corresponds
to the �rst principle of thermodynamics, as well as the
evolutionary relation, appears to be a nonidentical rela-
tion. This points to a noncommutativity of the balance
conservation laws (for energy and linear momentum)
and to a nonequilibrium state of the thermodynamic
system.

If condition of the integrability be satis�ed, from the
nonidentical evolutionary relation, which corresponds
to the �rst principle of thermodynamics, it follows an
identical relation. It is an identical relation that corre-
sponds to the second principle of thermodynamics.

If dw = p dV , there is the integrating factor � (a
quantity which depends only on the characteristics of
the system), where 1=� = pV=R is called the tempera-
ture T [15]. In this case the form (dE + p dV )=T turns
out to be a di�erential (interior) of some quantity that
referred to as entropy S :

(dE + p dV )=T = dS: (7:2)

If the integrating factor � = 1=T has been realized,
that is, relation (7.2) proves to be satis�ed, from rela-
tion (7.1), which corresponds to the �rst principle of
thermodynamics, it follows

dS = �Q=T: (7:3)

This is just the second principle of thermodynamics for
reversible processes. It takes place when the heat in
ux
is the only action onto the system.

If in addition to the heat in
ux the system expe-
riences a certain mechanical action (for example, an
in
uence of boundaries), then we obtain

dS > �Q=T (7:4)

that corresponds to the second principle of thermody-
namics for irreversible processes.

In the case examined above a di�erential of entropy
(rather than entropy itself) becomes a closed form. fIn
this case entropy manifests itself as the thermodynamic
potential, namely, the function of state. To the pseu-
dostructure there corresponds the state equation that
determines the temperature dependence on the thermo-
dynamic variablesg .

2. The gas dynamical systems
We take the simplest gas dynamical system, namely,

a 
ow of ideal (inviscous, heat nonconductive) gas [23].

Assume that gas (the element of gas dynamic sys-
tem) is a thermodynamic system in the state of local
equilibrium (whenever the gas dynamic system itself
may be in nonequilibrium state), that is, it is satis�ed
the relation [15]

Tds = de + pdV; (7:5)

where T , p and V are the temperature, the pressure
and the gas volume, s , e are entropy and internal en-
ergy per unit volume.

Let us introduce two frames of reference: an iner-
tial one that is not connected with the material system
and an accompanying frame of reference that is con-
nected with the manifold formed by the trajectories of
the material system elements.

The equation of the balance conservation law of en-
ergy for ideal gas can be written as [23]

Dh

Dt
� 1

�

Dp

Dt
= 0; (7:6)

where D=Dt is the total derivative with respect to time
(if to designate the spatial coordinates by xi and the
velocity components by ui , D=Dt = @=@t+ui@=@xi ).
Here � = 1=V and h are respectively the mass and the
entalpy densities of the gas.

Expressing entalpy in terms of internal energy e
with the help of formula h = e + p=� and using rela-
tion (7.5) the balance conservation law equation (7.6)
can be put to the form

Ds

Dt
= 0: (7:7)

And respectively, the equation of the balance con-
servation law for linear momentum can be presented as
[23,27]

grad s = (gradh0 + U�rotU �F + @U=@t)=T; (7:8)

where U is the velocity of the gas particle, h0 =
(U �U)=2+h , F is the mass force. The operator grad
in this equation is de�ned only in the plane normal to
the trajectory.

Since the total derivative with respect to time is
that along the trajectory, in the accompanying frame
of reference equations (7.7) and (7.8) take the form:

@s

@�1
= 0; (7:9)

@s

@��
= A� ; � = 2; ::: (7:10)

where �1 is the coordinate along the trajectory, @s=@��

is the left-hand side of equation (7.8), and A� is ob-
tained from the right-hand side of relation (7.8).

Equations (7.9) and (7.10) can be convoluted into
the equation

ds = A�d�
�; (7:11)
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where A�d�� = ! is the �rst degree di�erential form
(here A1 = 0,� = 1; � ).

Relation (7.11) is an evolutionary relation for gas
dynamic system (in the case of local thermodynam-
ic equilibrium). Here  = s . fIt worth notice that
in the evolutionary relation for thermodynamic system
the dependence of entropy on thermodynamic variables
is investigated (see relation (7.5)), whereas in the evo-
lutionary relation for gas dynamic system the entropy
dependence on the space-time variables is consideredg .

Relation (7.11) appears to be nonidentical. To make
it sure that this is true one must inspect a commutator
of the form ! .

Nonidentity of the evolutionary relation points to
the nonequilibrium and a development of the gas dy-
namic instability. Since the nonequilibrium is produced
by internal forces that are described by the commutator
of the form ! , it becomes evident that a cause of the
gas dynamic instability is something that contributes
into the commutator of the form ! .

One can see (see (7.8)) that the development of in-
stability is caused by not a simply connectedness of
the 
ow domain, nonpotential external (for each local
domain of the gas dynamic system) forces, a nonsta-
tionarity of the 
ow.
fIn the case when gas is nonideal equation (7.9) can

be written in the form

@s

@�1
= A1;

where A1 is an expression that depends on the en-
ergetic actions (transport phenomena: viscous, heat-
conductive). In the case of reacting gas extra terms
connected with the chemical nonequilibrium are added.
These factors contributes into the commutator of the
form ! .g

All these factors lead to emergence of internal forces,
that is, to nonequilibrium and to development of vari-
ous types of instability.

And yet for every type of instability one can �nd
an appropriate term giving contribution into the evolu-
tionary form commutator, which is responsible for this
type of instability. Thus, there is an unambiguous con-
nection between the type of instability and the terms
that contribute into the evolutionary form commuta-
tor in the evolutionary relation. fIn the general case
one has to consider the evolutionary relations that cor-
respond to the balance conservation laws for angular
momentum and mass as wellg.

As it was shown above, under realization of addi-
tional degrees of freedom it can take place the transi-
tion from the nonequilibrium state to the locally equi-
librium one, and this process is accompanied by emer-
gence of physical structures. The gas dynamic forma-
tions that correspond to these physical structures are
shocks, shock waves, turbulent pulsations and so on.
Additional degrees of freedom are realized as the con-

dition of the degenerate transform, namely, vanishing of
determinants, Jacobians of transforms, etc. These con-
ditions specify the integral surfaces (pseudostructures):
the characteristics (the determinant of coe�cients at
the normal derivatives vanishes), the singular points
(Jacobian is equal to zero), the envelopes of character-
istics of the Euler equations and so on. Under passing
throughout the integral surfaces the gas dynamic func-
tions or their derivatives su�er breaks.

3. Electromagnetic �eld
The system of charged particles is a material medi-

um, which generates electromagnetic �eld.
If to use the Lorentz force F = �(E + [U�H]=c),

the local variation of energy and linear momentum of
the charged matter (material system) can be written re-
spectively as [24]: �(U �E), �(E + [U�H]=c). Here
� is the charge density, U is the velocity of the charged
matter. These variations of energy and linear momen-
tum are caused by energetic and force actions and are
equal to values of these actions. If to denote these ac-
tions by Qe , Qi , the balance conservation laws can be
written as follows:

� (U �E) = Qe; (7:12)

� (E + [U�H]=c) = Qi: (7:13)

After eliminating the characteristics of the mate-
rial system (the charged matter) � and U by appli-
cation of the Maxwell-Lorentz equations [24], the left-
hand sides of equations (7.12), (7.13) can be expressed
only in terms of the strengths of electromagnetic �eld,
and then one can write equations (7.12), (7.13) as

c divS = � @

@t
I + Qe; (7:14)

1

c

@

@t
S = G + Qi; (7:15)

where S = [E�H] is the Pointing vector, I = (E2 +
H2)=c , G = E divE + grad(E �E) � (E � grad)E +
grad(H �H) � (H � grad)H .

Equation (7.14) is widely used while describing elec-
tromagnetic �eld and calculating energy and the Point-
ing vector. But equation (7.15) does not commonly be
taken into account. Actually, the Pointing vector S
must obey two equations that can be convoluted into
the relation

dS = !2: (7:16)

Here dS is the state di�erential being 2-form and the
coe�cients of the form !2 (the second degree form) are
the right-hand sides of equations (7.14), (7.15). It is
just the evolutionary relation for the system of charged
particles that generate electromagnetic �eld.

By analyzing the coe�cients of the form !2 (ob-
tained from equations (7.14), (7.15), one can assure one-
self that the form commutator is nonzero. This means
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that from relation (7.16) the Pointing vector cannot be
found. This points to the fact that there is no such a
measurable quantity (a potential).

Under what conditions can the Pointing vector be
formed as a measurable quantity?

Let us choose the local coordinates lk in such a way
that one direction l1 coincides with the direction of
the vector S . Because this chosen direction coincides
with the direction of the vector S = [E�H] and hence
is normal to the vectors E and H , one obtains that
divS = @s=@l1 , where S is a module of S . In addition,
the projection of the vector G on the chosen direction
turns out to be equal to �@I=@l1 . As a result, after
separating from vector equation (7.15) its projection
on the chosen direction equations (7.14), (7.15) can be
written as

@S

@l1
= �1

c

@I

@t
+

1

c
Qe; (7:17)

@S

@t
= �c @I

@l1
+ cQ0i; (7:18)

0 = �G00 � cQ00i:

Here the prime relates to the direction l1 , double
primes relate to the other directions. Under the con-
dition dl1=dt = c from equations (7.17), (7.18) it is
possible to obtain the relation in di�erential forms

@S

@l1
dl1 +

@S

@t
dt =

= �
�
@I

@l1
dl1 +

@I

@t
dt

�
+ (Qe dt + Q0i dl1): (7:19)

Because the expression within the second braces in the
right-hand side is not a di�erential (the energetic and
force actions have di�erent nature and cannot be con-
jugated), one can obtain a closed form only if this term
vanishes:

(Qe dt + Q0i dl1) = 0 (7:20)

that is possible only discretely (rather than identically).
In this case dS = 0, dI = 0 and the modulus of

the Pointing vector S proves to be a closed form, i.e.
a measurable quantity. The integrating direction (the
pseudostructure) will be

� @S=@t

@S=@l1
=

dl1
dt

= c: (7:21)

The quantity I is the second dual invariant.
Thus, the constant c involving into the Maxwell

equations is de�ned as the integrating direction.

4. Gravitational �eld
Material system (medium), which generates grav-

itational �eld, is cosmological system. What can be
said about the pseudo-Riemann manifold and Riemann
space? The distinctive property of the Riemann man-
ifold is an availability of the curvature. This means

that the metric form commutator of the third degree is
nonzero. Hence, it does not equal zero the evolutionary
form commutator of the third degree p = 3, which in-
volves into itself the metric form commutator. That is,
the evolutionary form that enters into the evolutionary
relation is unclosed, and the relation is nonidentical.

When realizing pseugostructures of the dimensions
1, 2, 3, and 4 and obtaining the closed inexact forms
of the degrees k = 3, k = 2, k = 1, k = 0, the pseudo-
Riemann space is formed, and the transition to the ex-
act form of zero degree corresponds to the transition to
the Riemann space.

It is well known that while obtaining the Einstein
equations it was suggested that there are ful�lled the
conditions [28]: the Bianchi identity is satis�ed, the
coe�cients of connectedness are symmetric, the con-
dition that the coe�cients of connectedness are the
Christo�el symbols, and an existence of the transfor-
mation, under which the coe�cients of connectedness
vanish. These conditions are the conditions of realiza-
tion of the degenerate transformations for nonidentical
relations obtained from the evolutionary relation of the
degree p = 3 and after going to the exact relations. In
this case to the Einstein equation there corresponts the
identical equation of the �rst degree.

In conclution we can mention the following.
Physical �elds are described by invariant �eld theo-

ry that is based on exact conservation laws. The prop-
erties of closed exterior di�erential forms lie at the basis
of mathematical apparatus of the invariant theory. The
mechanism of forming physical �elds can be described
only by evolutionary theory. The evolutionary theory
that is based on the balance conservation laws for ma-
terial systems is just such a theory. It is evident that
as the common �eld theory it must serve a theory that
involves the basic mathematical foundations of the evo-
lutionary and invariant �eld theories.
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The paper is devoted to systematic criticism of some aspects of the special relativity theory (SRT). The main
attention is given to the inconsistency and groundlessness in a seemingly \working" section of this theory { the
relativistic dynamics.

1. Introduction

Though the technology achievements have been quite
impressive in the elapsed century, the achievements of
science should be recognized to be much more modest
(contrary to \circumscienti�c" advertising). All these
achievements can be attributed, most likely, to e�orts of
the experimenters and inventors, rather than to \break-
throughs" in the theoretical physics. The \value" of
\post factum arguments" is well-known. Besides, it
is desirable to evaluate substantially the \losses" from
similar \breakthroughs" of the theorists. The major
\loss" of the past century is the loss of unity and in-
terdependence in physics as a whole (the unity in the
scienti�c ideology and in the approach to various areas
of physics). The modern physics obviously represents
by itself a \raglish blanket", which is tried to be used
for covering boundless \heaps" in separate investiga-
tions and unbound facts. Contrary to the arti�cially
maintained judgement, that the modern physics rests
upon some well-veri�ed fundamental theories, too fre-
quently the ad hoc hypotheses appear (for a certain
particular phenomenon), as well as science-like adjust-
ments of calculations to the \required result", similarly
to students' peeping at an a priori known answer to the
task. The predictive force of fundamental theories in
applications occurs to be close to zero (contrary to alle-
gations of \showman from science"). This relates, �rst
of all, to the special relativity theory (SRT): all practi-
cally veri�able \its" results were obtained either prior
to developing this theory or without using its ideas,
and only afterwards, by the e�orts of \SRT accumula-
tors", these results have been \attributed\ to achieve-
ments of this theory. The relativists try to magnify the
signi�cance of their theory by co-ordinating with it as
many theories as possible, including those in absolutely
non-relativistic areas. The arti�cial character of such a
globalistic \web" of interdependencies is obvious. We

1e-mail: sergey.arteha@mtu-net.ru

shall leave for conscience of \showman from science"
their intention to deceive or to be deceived (to their
personal interests) and shall try to impartially analyze
some doubtful aspects of SRT.

It is well known a philosophical statement (legibly
applicable to SRT): \we can see that thing in the ex-
periment we want to see there." Such an attitude is
prepared and the situation is aggravated by the theo-
rists, who are \stewed in their own juice" and ready
to see in every experiment only con�rmation to their
tricks with mathematical symbols (although the author
belongs to theorists as well). The existing uncertain-
ties of the theory (carefully masked in SRT) allow the
theorists to vary interpretation of experiments within
considerable limits. And, afterwards, the incomplete-
ness of experiments is masked \in a proper manner" by
statistical \adjustment" of the data (data \truncation\
under the desirable result).

In deriving the equations of motion of an electric
charge and the �eld equations in theoretical physics'
courses an attempt is made to cause an illusion of an
\unequivocal idyll." But in such a case the Maxwell
equations would be the equations of any �elds, and all
forces would be of Lorentz type and would have the
form of Coulomb's law in a static case. Such an alter-
native of the general relativity theory (GRT) can be dis-
cussed (with some supplementation and modi�cations)
for the gravitational �eld. However, the situation is
di�erent in the general case: for example, the nuclear
forces are not proportional to R�2 . There exist many
counterexamples of various �elds and forces. Therefore,
the theoretical physics (including the SRT approach)
cannot determine all existing phenomena proceeding
from their own principles only. This is an exclusive pre-
rogative of the experiment. (The experimenter should
be principally prepared to the fact that any theory can
occur to be inaccurate or even wrong).

Also surprising is the apologetic advertising of SRT.
For example, the pathos's assertion of [1], that \the re-
lationship between the mass and energy underlies the
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entire nuclear power engineering" is groundless both in
the historical and in the practical respect. This re-
lationship bears no relation either to discovery of ele-
mentary particles and radioactivity, or to studying the
spontaneous and forced decaying of uranium nuclei, or
to determining the stability of nuclei, or to �nding pos-
sible channels of nuclear reactions and possibility of
practical choice between them, or to the isotope sepa-
ration technology, or to practical utilization of released
energy, etc. And (as paradoxical it may seem) this re-
lationship bears no relation even to determining the
released energy in any particular well-known reaction.
This is because all things have historically happened
just in the opposite order: at �rst, some reaction has
been found, which was detected from the energy re-
lease exactly. And then the calculational functions {
the combinations from mathematical symbols { can be
derived by various methods. As a rule, it is technically
impossible to determine the mass variation in a nuclear
reaction directly. Even if one uses doubtful theoreti-
cal interpretations, the attempt to determine the mass
variation will occur to be a rather rough and costly
pleasure. Thus, the relationship between the mass and
energy plays, in the practical respect, a part of scholar
mathematical exercises for reverse substitutions, since
desirable results can always be \derived\ from the cal-
culated data, which were tabulated post factum.

In the previous works we have proved the inconsis-
tency of kinematic concepts of SRT [2-4,6], the ground-
lessness of GRT [5], the erroneousness of dynamical con-
cepts of SRT [7], the invalidity of relativistic interpre-
tations of some experiments [2,8]. The present paper
supplements to the aforementioned systematic criticism
of the relativity theory. The main purpose of this pa-
per is to demonstrate that even in a seemingly unique
practical SRT section, namely, in the relativistic dy-
namics, there exist numerous questions, compelling one
to doubt in the validity of relativistic ideas and in in-
terpreting their results.

2. Criticism of Some SRT Aspects

We shall begin with some general remarks. The group
properties of mathematical equations, as the transfor-
mations with mathematical symbols, do not bear any
relation to any physical principles or postulates; that is,
the group properties can be found without additional
physical hypotheses. For example, the Lorentz trans-
formation laws, which re
ect the group properties of
the Maxwell equations in vacuum (or of the classical
wave equation, including that in the acoustics), are not
bound at all with SRT's postulate of constancy of the
speed of light or with the relativity principle.

SRT tries to �ght, from principal grounds, \against
the windmills\: for example, against the notion of ab-
solute rigid body. In the classical physics, however,

nobody assigns a literal sense in the abstraction of ab-
solutely rigid body. It is obvious for everybody, that
there are no absolutely rigid bodies even at absolutely
non-relativistic velocities (we shall mention the role of
accelerations, or, more correctly, of forces, in this issue
by remembering usual collisions of cars on roads). Sim-
ply, in describing some motions the in
uence of strains
is negligible or unessential for the phenomenon under
study, and then, only for the sake of simplifying math-
ematical derivations, the absolutely rigid body abstrac-
tion is applied. SRT principally tries to consider ele-
mentary particles to be points [9] and immediately en-
counters another principal problem { the singularity of
some quantities.

It is very \fashionable" to investigate any phe-
nomenon by means of the �ne Mossbauer e�ect. It is
rather strange, however, to attribute the temperature
e�ect on the resonance frequency shift to SRT's time
slowdown e�ect { this is a clear speculation. Temper-
ature variations in
uence, to a higher or lower extent,
all physical phenomena without exception. The SRT
time bears no relation to an obviously classical �eld of
investigation. Otherwise, if we extrapolate the global
claim of relativists quite slightly into a close �eld { up
to melting of a specimen (where the e�ect itself van-
ishes), then { what should be declared in this case: the
time has stopped its running, the time became singular,
or some other delirium?

Though the contradictions of the relativistic kine-
matics have been analyzed in detail earlier [2-6], this
issue needs additional investigation. We shall consid-
er now the relativistic e�ect of contraction of distances.
We shall \agree in advance" about the followingmental
experiment. Let a beacon, disposed at the middle of a
segment, to send a signal toward its ends. Let segment's
length be one million light years. At the time of arrival
of a 
ash two pedestrians at segment's ends begin to
walk at equal velocity toward the same preselected side,
along the straight line containing the given segment,
and they will be walking for several seconds. The mov-
ing segment (a system of two pedestrians) should be
contracted relative to the ends of a motionless segment
by some hundreds kilometers. However, none of pedes-
trians will \
y away" for hundreds kilometers during
these seconds. The moving segment could not also be
torn o� at the middle, because the Lorentz transforma-
tion laws are continuous. So, where has this segment
been contracted in such a case?

Let us make some comment on \astonishingness"
of the relativistic law of \addition" of velocities. We
pay attention to the obvious fact: for exchanging in-
formation the signals should be sent necessarily in the
direction of an object, rather than in the opposite di-
rection. Therefore, there is nothing surprising in ex-
changing the signals, where in the classical case it oc-
curs also that, as a result of formal addition of veloc-
ities, v1 + v2 > vsignal . Let two airplanes to take o�
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Figure 1: Exchange of a signal.

from the aerodrome O at velocities of 0:9vsound and 
y
away from each other in the opposite directions of axis
X . Whether the exchanging of signals between them
is possible? Certainly yes! Because the sound wave
propagates in air irrespective of the velocity of source
S1 at signal issuing time, the �rst airplane (which has
sent a signal) will catch up the wave front propagating
in the positive direction of axis X , whereas the sec-
ond airplane will \compete" with the wave front prop-
agating in the negative direction of axis X . Both air-
planes are moving slower as compared to propagation of
corresponding wave front sections nearest to them (see
Fig. 1). Thus, the sum of velocities is compared (in a
complicated manner), in reality, with quantity 2vsound ,
rather than with the speed of sound.

Now we shall proceed to the relativistic dynamics.
SRT is completely inconsistent in considering acceler-
ations and the dynamics of particles in general. The
Lorentz transformations (from which the entire SRT
issues) cannot impose any limitations on accelerations
of bodies (as well as on studying accelerated systems).
However, in such a case some SRT mismatches with the
experiment would become too noticeable. As a result,
SRT arti�cially declares that the study of accelerated
(non-inertial) systems is a prerogative of GRT. But the
successive application of this declaration would remain
from SRT only the Lorentz transformations themselves
and the velocity addition law (that is, a part of kine-
matics). To rise the \signi�cance\ of the theory, at �rst,
in SRT the 4-acceleration is calculated formally math-
ematically, and then the relativistic dynamic equations
are formally \derived." But what about the transfor-
mation of forces? In this case, contrary to SRT's own
declaration, it is necessary to transform one accelerated
particle (for v 6= 0) into \another" accelerated parti-
cle (for v = 0). The transformation of electromagnetic
�elds also contradicts the declared self-limitations, since
the �elds, introduced in a conventional manner, re
ect
nothing but the action of electromagnetic forces (the
force approach). It would seem that the declaring of
equivalence of SRT and GRT approaches could rise the
\signi�cance" of the theory. However, in some prob-
lems the application of SRT and GRT leads to di�erent
quantitative results. These mismatches result in the ne-
cessity of sacri�cing any of the relativistic theories (or,
more correctly, both of them).

In the classical physics all concepts have a clearly
de�nite sense, and they should not be replaced with

v

L

e

e 1

2

θ

Figure 2: Paradox of transformation of forces.

ersatzes. Let the relativists be inventing other names to
their new concepts (or, more correctly to combinations
of symbols). The relativistic de�nition of coordinates
of the center of inertia [9]:

R =

P
ErP
E

has no physical sense, since in SRT the center of inertia
of the same system of moving particles occurs to be
di�erent in various frames of reference. Therefore, it
does not ful�ll its functional designation of the center of
equilibrium. Let we have a massive planar box, in which
the massive balls are moving. Let in the classical case
the center of inertia of the whole system (in the course
of motion and collisions of balls) be always coinciding
with the center of a box. Then in the classical case
we can balance it (for example, in the Earth's �eld of
gravity or in some other �eld) on a support of small
cross section, and the equilibrium will be kept. In SRT,
on the opposite, if we only shall look at this system from
a rapidly moving relativistic missile, then the center of
inertia can appear to be not above a support, and the
equilibrium will be violated. A remarkable objectivity
of SRT: in order that the equilibrium of plasma in a
controlled thermonuclear fusion not be disturbed, we
ask the relativistic missiles not to 
y and not to \spy"
upon the experiment.

Consider now a paradox of transformation of forces.
Let we have two charges e1 and e2 of opposite sign,
which are at rest and separated by two parallel planes
being at distance L apart of each other (see Fig. 2).
Owing to attraction to each other, the charges are at
a minimum distance L from one another. (They are
at the state of neutral equilibrium with respect to a
system of planes.) We shall draw a mark on a plane
under each charge, or we shall place the observers near-
by. Now we shall observe this system of charges from
a relativistic missile moving at velocity v . Let � be
the angle between vectors v and L . Determining the
electromagnetic forces, acting between these charges in
missile's frame of reference [9], we shall be interested in
tangential components of forces, i.e. in the components
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of forces along the planes. The force in
uencing charge
e1 is

F� =
e1e2(1� v2=c2)(v2=c2) sin � cos �

L2(1� v2 sin2 �=c2)3=2 6= 0: (1)

Therefore, the charges will be displaced from their ini-
tial position. Let the balls be having huge charges,
L be small (L ! 0), and v be large (v ! c). Let
the observers to retain the balls with very thin threads.
Whether they will be torn? The answer depends on the
system of observation. So, who of the observers will be
right? Thus, we have another inconsistency of SRT.

Now we shall make a methodical remark on con�r-
mation of relativistic formulas. The accuracy of exper-
iments in microscopic world's physics is low, as a rule,
in a separate measurement act. However, this accuracy
is arti�cially increased by choosing the events \needed
for the theory" and by subsequent statistical processing
the results (adjustment under the theory). Unlike the
classical �eld of investigation, nobody measures direct-
ly the value of velocity (as well as the mass) of particles
in relativistic ranges of velocities. Therefore, it is im-
possible to substitute, in the explicit form, quantities
v and m into calculated (!) values of energy and mo-
mentum and verify the conservation laws of SRT. Even
if one determines experimentally some nearly-kept nu-
merical quantities, the literal expression for energy and
momentumcan be extracted from these �gures by many
various techniques. And, you see, even the numerical
values of energy and momentum have been measured
indirectly (again, we are dealing with theoretical inter-
pretations). In studying collisions with particles being
\at rest" the question arises: where so many resting
particles have been found from? And how had this
fact been veri�ed (since this circumstance can relate to
determination of collision and scattering angles, of an
aiming parameter, etc.)?

SRT bears no priority relation to explaining the
presence of momentum in a photon. Any particle (in-
cluding a photon) is detected from its interaction with
other particles, that is, actually, from the momentum
transfer. The experimental basis for de�ning the pres-
ence of photon's momentumare Lebedev's experiments
on measuring the pressure of light. The literal expres-
sion for a kinetic energy of photon can be elementary
deduced from the general de�nition: dE = vdp (from
the general equations of motion). If we take into ac-
count that the photon moves at a speed of light v = c ,
then after integration we obtain E = cp without any
SRT's ideas.

Very frequently in SRT, for \simplifying" the de-
scription of collisions, the technique of transition to any
\conveniently moving" frame of reference is used. Such
a procedure, however, has no physical grounds, and
the principle of relativity for closed identical systems
is for nothing here at all. If the relativistic experi-
ments are carried out on arti�cial beams of particles,

then the sources (accelerators) and recording instru-
ments are bound to the Earth, and accelerators and
instruments will not 
y, together with a moving observ-
er, from our mental imagination only. If some process
in Wilson's chamber is investigated, then the tracks of
particles are bound to a medium (that is, to Wilson's
chamber), rather than to a 
ying observer. For exam-
ple, in the classical physics the angle between the tracks
of particles will not change due to motion of an observ-
er. At the same time, the angle between the velocities
of particles, which leave mentioned tracks, can depend
on observer's motion velocity. In the relativistic physics
the angles between trajectories and between velocities
of particles depend, also according to various laws, on
observer's motion velocity. Therefore, such a seemingly
probable from SRT viewpoint transition to a new frame
of reference can essentially distort the interpretation of
a solution. That is, any process should be considered in
the frame of reference of a real observer (or recording
instrument) only.

One more distortion of reality is the consideration
of the process of collision of two particles (being prin-
cipally point-like in SRT) as a planar motion. In fact,
point-like particles should be considered as a limiting
case of particles having real �nite size (otherwise no
frontal collisions would be observed, it would be im-
possible to consider collisions of atoms and molecules,
the protons would not have structure, etc.). And in
the present case the collision of particles is principally
three-dimensional (the probability of planar motion is
zero). Let, for example, two identical balls (1 and 2)
to approach each other before collision over straight
lines crossing in space (the minimum distance between
straight lines is smaller than the ball diameter). Even
from the very beginning of the experiment we cannot
draw the plane through these speci�ed straight lines.
Nevertheless, we shall take the middle of a minimum
distance between crossing straight lines (the trajec-
tories before collision) and draw through it crossing
straight lines parallel to the given trajectories. Now,
only one plane � passes through crossing straight lines
(Fig. 3). The centers of balls move parallel to this
plane before collision: the �rst ball's center moves
slightly above the plane and the second ball's center
{ slightly below this plane. After collision the balls will

y over other crossing straight lines. And, again, it
is impossible to draw the plane through these straight
lines. Again, we shall perform a similar procedure with
parallel transition of straight lines, on which the lines of
motion lie after collision, before crossing at the middle.
We shall draw through crossing straight lines the plane
� (the centers of balls will again move on di�erent sides
from this plane). However, \the plane before collision"
does not coincide with \the plane after collision," but
intersects it at some angle.

Second method: let us draw one plane 
 through
the trajectory of motion of the �rst particle (crossing
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Figure 3: Nonplanar motion of two particles.

straight lines of its motion before and after collision),
and the second plane � { through a similar trajectory
of motion of the second particle. However, these planes
are also crossed at some angle (Fig. 4). So, what follows
from three-dimensionality of motion? To answer this
question we shall write the classical laws of conservation
of momentum (in projections) and of energy:

v1x + v2x = v01x + v02x (2)

v1y + v2y = v01y + v02y (3)

v1z + v2z = v01z + v02z (4)X
i

(v2ix + v2iy + v2iz) =
X
i

(v0
2
ix + v0

2
iy + v0

2
iz): (5)

We see, that for six unknown quantities (v01x , v
0
1y , v

0
1z ,

v02x , v
0
2y , v

0
2z ) there are four equations only. Thus,

there should remain two inde�nite parameters in the
solution. If we suppose the motion to be planar (i.e. ex-
clude equation (4)), then for remaining four unknowns
we shall have three equations. Therefore, in comparing
SRT results with the classical physics the substitution
of solutions is accomplished, and there remains only
one inde�nite parameter (the scattering angle is usually
considered to be the latter one). Such a substitution re-
sults in improper interpretation of the experimental da-
ta, especially when the missed quantities are restored.
For example, the book [10] demonstrates two tracks of

y-away of particles of identical mass and charge (more
correctly, of identical e=m ratio) with dispersion an-
gle lower than 90� , and the conclusion on the classical
mechanics invalidity is drawn from this demonstration.
Let us write the expression for angle � between the
trajectories of dispersed particles:

cos� =
v01xv

0
2x + v01yv

0
2y + v01zv

0
2zq

(v021x + v021y + v021z)(v0
2
2x + v022y + v022z)

:(6)

Choose axis Z so, that it will be v1z = v2z = 0. Now
we express variable v01x from equation (2), variable v01y
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2’

1
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δ

Figure 4: Three-dimensionality of collision of two particles.

{ from equation (3), variable v01z { from equation (4),
and from equation (5) we shall express quantity v022z
(in this case the condition v022z > 0 restricts the region
of possible values of all variables). Substitute all afore-
mentioned quantities into equation (6). As a result, we
obtain the two-parametric dependence on v02x and v02y ,
which is not written here because of its awkwardness.
Using graphical programs, we can be convinced that
for the given values of v1x; v1y; v2x; v2y we obtain some
surface similar to the inner part of a cylinder; that is,
quantity cos� varies within wide limits. For example,
it can easily be veri�ed that the values

v1x = 0; 1; v1y = 0; 1; v2x = 0; 7; v2y = 0; 7;

v01x = 0; 6; v02x = 0; 2; v01y = 0; 4;

v02y = 0; 4; � v02z = v01z =
p
0; 14

satisfy all classical conservation laws (2-5). For these
values we obtain cos� = 0:29554, that is, � � 72:8� .
Note: if the velocities are assumed to be expressed in
terms of the speed of light, then a lower velocity is
quite real for the motion of internal electrons in atoms
beginning with z � 60. And, generally, nobody saw
electrons in atoms being at rest! The angle of 90� is
unambiguously obtained in the classical physics at col-
lision with a particle being at rest in the coordinate
system of a recorder (but only where such a particle
can be found?). However, the observed 
y-away angle
of 90� does not result at all in an unambiguous op-
posite assertion, that one of particles had been at rest
(the mathematical probability of such an event is in-
�nitesimal). Thus, the reverse problem of restoring the
missed data is not an unambiguous procedure either in
the classical, or in the relativistic physics (there exists
an in�nite number of various self-consistent solutions).

For more rigorous veri�cation of conservation laws
in collisions (from any theory) it is necessary to study
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collisions of particles in vacuum for narrow monoener-
getic beams of known particles for the given collision
angles. In this case the complete study of the collision
process should include the check of the energy balance
of particles (for each scattering angle in space), the test-
ing the balance of momenta of particles, the testing the
balance of the total number of particles in beams be-
fore and after collision (the probability of scattering),
the control of the balance of arising radiation in ener-
gies and directions. There are two more questions (two
more uncertainties), which are not usually emphasized,
namely: does the scattering depend on a mutual orien-
tation of spins of colliding particles? And do these spins
change during the collision? In the classical physics the
answer to these questions is \yes" (but in the quanti-
tative respect it strongly depends on the \structure" of
balls).

The author did not meet any complete analysis of
any collision process in SRT with respect to all issues
set forth above. This does not imply, however, an un-
ambiguous conclusion on invalidity (within the limits of
experimental errors) of usually utilized relativistic con-
servation laws in any collision process (though this can
quite occur to be the fact for many separate cases). The
author only asserts that there are no even separate ex-
amples of absolute con�rmation of relativistic collision
laws (to say nothing of the global con�rmation).

From a principally rigorous position, the application
of relativistic conservation laws to the collision process
in the elementary particle physics is rather doubtful.
Whether these laws can retain their form irrespective of
the charge of colliding particles, collision angles and dis-
persion angles? You see, the charged particles undergo
acceleration during the collision. Therefore, some radi-
ation (�eld) should always be observed. Is it necessary,
really, to behave as the students having peeped at the
answer to the problem: if the instrument has recorded
a 
 -quantum (\has seized our hand\), then it should
be clearly taken into account \with a clever air." And
should one trust in validity of SRT formulas \with a
clever air" in remaining cases as well? So, where is the
\predictive force" of SRT? Actually, the conservation
laws should be explicitly supplemented by the terms,
which take into account the energy and momentum of
the �eld.

Generally speaking, the only case, where the dis-
cussion of relativistic conservation laws at \collisions"
is lawful, is the interaction of particles with the forces of
electromagnetic nature (the Lorentz force). For remain-
ing cases the ful�llment of relativistic conservation laws
is an unveri�ed hypothesis (the light spheres of SRT
bear no relation to the forces of non-electromagnetic
nature). However, in the case of electromagnetic inter-
actions no SRT ideas are required for deriving relativis-
tic conservation laws as well. It is known that the equa-
tions of motion with the initial conditions completely
determine all characteristics of motion, including the

integrals of motion. Such an integral of motion can be
the energy (but not always!). It follows from the equa-
tion of motion, that

dP

dt
= F ) vdP = Fdr: (7)

Introduce the de�nition of the potential energy

U = �
Z r

r0

Fdr:

Knowing the form of the momentum (this is a quan-
tity appeared in the experimental equation of motion
(7); for example, in the classical case P = mv and
in the relativistic case P = mv=

p
1� v2=c2 , one can

obtain the energy conservation law from dE = vdP�
Fdr : classical U + mv2=2 = constant , or relativistic
U + mc2=

p
1� v2=c2 = constant , respectively. Under

the condition of equality forces of action and counterac-
tion (the third Newton's law, the hypothesis of central
forces) we have: F12 = �F21 . Then from the equa-
tion of motion (7) we can obtain the momentum con-
servation law (this is again a quantity appeared in the
experimental equation of motion (7): from dP1=dt =
F12; dP2=dt = F21 we obtain

d(P1 + P2)

dt
= 0; ) P1 + P2 = constant:

However, in the presence of magnetic forces F12 6=
�F21 , and the relativistic law of conservation of mo-
mentum of particles can be violated in the general case.
Since the majority of particles (even many electrically
neutral ones) have magnetic moment, the application
of the relativistic momentum conservation law in the
nuclear physics and elementary particle physics with-
out explicit considering the �eld momentum is com-
pletely illegitimate. Therefore, we again arrive at the
necessity of explicit considering the momentum (and,
hence, the energy) of the �eld at collisions. (Possibly,
this will help to regulate the nuclear physics and ele-
mentary particle physics and to decrease the number of
particles-ghosts?)

The account taken of the radiation reaction force
also results in violation of energy and momentum con-
servation laws declared in SRT. Should we refuse from
accounting this force in the process of collision of par-
ticles? But this force just should be most signi�cant
in this process (there are great �elds, owing to rap-
prochement of high-energy particles, and great variable
accelerations).

The non-conservation of generally-accepted expres-
sions for relativistic energy and momentum at colli-
sions of particles results, in the general case, in the
non-conservation of the angular momentum in SRT as
well. However, the relativistic expression of the angular
momentum can be easily discredited for much simpler
examples [11]. Let us recall, for example, the para-
dox of a lever. Let two forces, equal in magnitude,
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Figure 5: Paradox of a lever.

F1 = F2 � F , to act on two identical arms l1 = l2 � l ,
disposed at angle �=2 (Fig. 5). The total moment of
forces equals zero. The structure remains motionless.
In the classical physics the result does not depend at
all on the frame of reference, and, hence, it is not nec-
essary to invent any new physical concepts, processes,
phenomena or mathematical derivations.

Di�erent is the situation in SRT. If somebody will
only look at this system from a missile moving at veloc-
ity v along one of arms, then the total moment will oc-
cur to be nonzero. Owing to contraction of lengths and
transformation of forces we have: Msum = F lv2=c2 6=
0. The lever must begin to rotate. It would seem that
such an inconsistency should entail refusal from SRT
and returning to the classical physics, that provides an
obvious and true result. However, the relativists (fol-
lowing Laue and Sommerfeld) have gone another way
[12]. \For the sake" of pseudo-science it was neces-
sary to sacri�ce something. Since the common sense
is less signi�cant for relativists, than SRT, it was nec-
essary for them to invent the missing pseudo-moment.
Now, if you simply rest upon something (on the wall,
for instance) or use a lever, then you should store some
additional clothes: \something" (the energy) will be-
gin to 
ow through you, and this quantity can occur
huge! Besides, the 
uxes (of sweat, probably?) can oc-
cur to be di�erent simultaneously, if somebody \spies"
upon you from di�erent moving missiles. If you keep
both levers with your hands with identical force, then
the energy from one hand merely 
ows away to an axis
and \settles" somewhere. Do not worry, however! This
\something" can not be measured in any way, but this
is just not necessary for relativists: this is not engag-
ing in physics, you see! Simply, the literal expressions
should be met with an obvious (from the common sense

viewpoint) result. Thus, instead of one principally un-
detectable relativistic e�ect (otherwise the inconsisten-
cy would be detected) we would obtain two principally
undetectable relativistic e�ects exactly balancing each
other. Similar tricks have an e�ect on many people (the
letters just converge!), in spite of the fact that \the dry
remainder" of all similar \inventions" is a priory obvi-
ous classical result.

Also fully unsatisfactory is the semi-classical deriva-
tion of the Einstein formula [1]: �E = �mc2 . First,
the notion of the center of masses is contradictory in
SRT [7]. Second, for some reason one remembers about
acoustic waves in SRT only when they are unessential
(distract from apparent paradoxes). But these waves
bear some relation to the given situation. Let at the
ends of a homogeneous tube of length L and mass M
there are bodies A and B of negligible mass [1] (we
take, for example, the monomolecular layers of the same
substance). Let the atoms of layer A be at exited state.
The following \circular process" is considered in [1]. At
�rst, body A emits a short light pulse in the direction
of body B . It is stated that the tube will begin to
move as a whole. But this is not the case. Let the
length L = 1 cm. The emitted pulse will make body
A to bend and move to the distance of about inter-
molecular one from tube's molecules retaining it. Then
the elastic force will arise, which tends to return the
lost equilibrium. As a result, the complicated system
of longitudinal and transversal oscillations will propa-
gate along a tube. During the time, for which the light
will reach body B , these acoustic waves will pass the
distance not greater than 10�5 cm (since vsound � c).
A similar process will be repeated with body B . Thus,
the oscillating tube will extend from center O in op-
posite directions (to the side of body A { to a slightly
greater distance), until the acoustic waves will cancel
each other and the equilibrium will establish. But even
this complicated real process does not matter, indeed.
Further on [1] body B with absorbed energy is brought
into contact with body A by internal forces; body B
returns energy back to body A and returns to its place
(and then the mathematical symbols are written). One
moment! Third, in what manner could body B transfer
electromagnetic excitation energy without transferring
momentum? Besides, it could be only the light pulse
(otherwise according to the second thermodynamic law
not all energy could transfer to body A). But in such
a case we would simply have a mutually reciprocal mo-
mentum transfer by means of light, and no global con-
clusions follow from this situation. The given problem
is similar to the classical problem on throwing a ball
in a boat from one person to another. The ball has a
mass, and in 
ight it also possesses nonzero momentum
and energy. The value of mass enters expressions for
a momentum and kinetic energy, but no \all-universe"
conclusions follow from this situation. The thing sought
in [1] can be obtained much easier. From the general
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expression dE = vdP we have for light �E = c�P .
If we introduce, in a classical manner, for a photon the
mass of motion P = mv , then from v = c = constant
follows the only possibility �P = c�m . As a result,
without any mental SRT ideas, we have �E = c2�m .
However, fourth, this result (irrespective of the method
of its derivation) relates to the electromagnetic energy
only and not to anything more (at least, there are no
proofs of generality of the result).

It would seem that for electromagnetic interactions
there should be the least number of reasons to doubt in
the relativistic equation of motion: dP

dt = eE+ e
c [v�B] ,

and, as a consequence, in relativistic conservation laws
for the process of collision. Nevertheless, we shall make
some remarks on the issue of validity of relativistic de-
scription of the Compton e�ect. Above we have already
considered some uncertainties for collision of balls { an
analog of the \billiard\-type Compton model. We shall
analyze the experiments described in the standard tuto-
rials, for example, in [1,13,14]. Note that if the time of
coincidence of instants of recording 
 -quanta and elec-
trons �t > 10�20 sec, then the experiments not only
do not prove the simultaneity of emitting of particles,
but also do not allow to attribute unambiguously the
particles to any act of scattering. Such an accuracy is
outside the limits of even modern possibilities (that is,
this is still a matter of \faith," and no statistics will
help here).

It is methodically incorrect to call the electrons, par-
ticipating in scattering, as free ones, because in such a
case their number should be constant in the experiment.
However, one has to consider this number to be di�er-
ent depending on a scattering angle, and if this angle
is rather small, all electrons are bound. In fact, howev-
er, all electrons participate in the momentum transfer
(owing to their motion in an atom) and capture from a

 -quantum a part of energy (because they are bound
in the atomic coordinate system).

Some points in the Compton e�ect theory are not
obvious. For example, what is the role of scattering
on larger particles, than electrons, { on nuclei (whether
the interference and its in
uence from radiation, scat-
tered on nuclei, are possible?)? Why the non-shifted
line is absent in the experiment with lithium (Comp-
ton, Wu)? On the contrary, it should always be present,
for example, from scattering on a nucleon. Why for all
substances there exist two peaks, situated almost sym-
metrically with respect to the initial line, rather than
one shifted peak? Besides, all tracks are not visualized
(as in the ideal theory), but are only restored with the
help of auxiliary means (and interpretations). That is,
in verifying the conservation laws we are dealing with
statistical hypotheses. In the experiments there are no
estimates of the probability of double scattering from a
specimen (but it can have a noticeable value), and the
role of multiply scattered \background" from all parts
of an experimental setup is evaluated nowhere. The ac-

curacy of experiments, even on determination of a scat-
tering cross-section, is low about In so doing, the most
presentable (favorable to the theory) events are chosen.
For example, in the experiment by Crane, Gaerttner
and Turin only 300 cases from 10000 photos nave been
chosen (whether this is not too little?), and the co-
incidence of the scattering cross-section data with the
Klein-Nishina-Tamm formula is declared. In the case
of large thickness of specimens (Kohlrausch, Compton,
Chao) the double scattering must obviously be taken
into account. Similarly, it is obvious that in Szepesi
and Bay's experiment the number of double scattering
events is of the same order, as that of single scattering
ones. If this fact is not taken into account, the declared
accuracy of 17% is rather doubtful. The declarative
corrections (adjustments), made by Hofstadter in his
experiment due to in
uence of various factors, cause
bewilderment. In this case after all corrections (adjust-
ments up to 30%!) the accuracy of 15% is declared. In
reality, in all experiments not the dispersion directions
are found, but the hitting into the given site of space is
recorded. The experimental con�rmation of a SRT in-
terpretation occurs to be rather doubtful. For example,
in the experiment by Cross and Ramsey almost a half
of points, with regard to declared limits of tolerances,
lie outside the theoretical curve. Of interest is the fact,
that after removing a recording device from the plane of
scattering the number of coincidences in scattering acts
remains to be considerable: it more than three times ex-
ceeds the background value. Also rather strange is to
compare Skobeltsyn's experiments with the theory with
respect to the ratio of a number of particles scattered
to various angles N10�

0� =N20�

10� . You see, each of these
quantities (both numerator and denominator separate-
ly) represents some averaged (e�ective) quantity. And
how is it possible, in the general form, to compare the
ratio of average quantities (two experiments) with the
ratio of true quantities (a theory)?

For more complete theoretical substantiation of the
Compton e�ect not one collimator is required (for inci-
dent particles), but three collimators for separating, in
addition, each type of scattered particles over narrow
directions. The absorbers are also necessary for elim-
inating the background. Then there will remain \on-
ly" the problem of �ltering all particles over energies.
Thus, even such an, apparently, purely relativistic phe-
nomenon, as the Compton e�ect, is not experimentally
veri�ed to a complete measure.

An incorrect procedure may occur to be also the
searching for solutions in SRT to an accuracy of up to
some expansion in v=c . The rejected terms can cardi-
nally change the form of a solution. The �eld of appli-
cability of the approximate solution in time can occur
to be such small, that the approximate solution will not
have any theoretical and practical value (but how can
it be detected without knowing the behavior of a true
function?). Also doubtful is to derive the averaged solu-
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tion from approximate one. A trivial example: it would
seem formally, that in the Lorentz force it is possible
to neglect the magnetic force containing v=c . This is
not the case, however: in the classical limit, instead of
a real average drift of a particle at constant velocity
perpendicular to both �elds, we would obtain the ac-
celerated motion along the �eld E . In the relativistic
limit [9] the velocities grows most rapidly also in the di-
rection of [E �B] . Apparently, due to this reason the
approximate Lagrange functions, constructed in SRT
up to some term in v=c , can cause some problems, and
the construction of an accurate Lagrange function is
principally problematic in SRT. The limited nature of
SRT results reveals itself in self-acceleration of charges
under an e�ect of radiation reaction. The radiation is
determined in the far-�eld zone and should not strong-
ly depend on the processes occurring on particle scales:
only re-evaluation of SRT rigorousness compels one to
consider elementary particles as point-like ones.

From author's standpoint the most consistent atti-
tude is a principal recognition of the results of relativis-
tic dynamics and electrodynamics as approximate ones,
to an accuracy provided by the experiment. One should
not overestimate the possibilities of purely theoretical
techniques and to overload the physics with globalisms.
It is namely this reason and insu�cient substantiation
of relativistic experiments, why the author does not try
to o�er any alternative theory. At present, the theory
should analyze and generalize those experiments, which
have been carried out particularly in the region of high
velocities.

3. Conclusion

The inconsistency of some aspects of the relativistic
kinematics and some dynamic concepts of SRT is addi-
tionally demonstrated in the present paper. The main
attention is given to criticism of the relativistic dy-
namics. The logical inconsistencies in this, seemingly
\working" and \veri�ed"

�eld of investigations are presented. The complete
groundlessness of a generally-accepted interpretation of
the relativistic dynamics is demonstrated, and the SRT
interpretation of the Compton e�ect is analyzed in de-
tail.
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We review the previous studies of galaxies and quasar redshifts discretisation. We present also the investigations of
the large scale periodicity, detected by pencil{beam observations, which revealed 128 (1/h) Mpc period, afterwards
con�rmed with supercluster studies. We present the theoretical possibility of obtaining such a periodicity using a
toy-model. We solved the Kepler problem, i.e. the equation of motion of a particle with null energy moving in
the uniform, expanding Universe, decribed by FLRW metrics. It is possible to obtain theoretically the separation
between large scale structures similar to the observed one.

1. Introduction

In the large scale Universe the search of regularities
is connected with testing, if radial velocities of galaxies
can admit an arbitrary values, or some regular patterns,
called periodisation or quantisation of galaxy redshifts
is observed. The search for possible periodicity in red-
shift distribution has been an important question from
the point of view of selection e�ects in observational da-
ta, as well as the correctness of applied statistics. The
possible interpretation of such e�ect is very important
too. The lack of a known mechanism causing redshift
discretisation constituted the basis for claims invoking
new physics at work. Due to di�erent methods of inves-
tigations we describe separately investigations of galaxy
and quasar redshift periodisation. There are presented
in sections two and three. The quasar redshift periodi-
sation in more details is presented elsewhere (Bajan et
al. 2004) Moreover, the fourth section is devoted to
the large scale periodicity with a period of a 128 (1/h)
Mpc. This large scale periodicity obtained originally by
pencil beam observations has been con�rmed by various
studies. So, in reality, it is the only redshift discretisa-
tion, which is almost commonly accepted. In the last
section we give the possible solution of the large scale
periodicity. We obtain the exact solution of the Kepler
problem in the expanding Universe. With appropri-

3e-mail: s�in@cyf-kr.edu.pl

ate �ne tunning it is possible to obtain the distribution
of structures with about 130 Mpc separation between
them.

2. The discretisation of galaxy
redshifts

The discussion of redshifts quantisation started with
works of Ti�t. In the Coma cluster of galaxies (Ti�t
1976) optically determined redshifts of member objects
can be grouped into bands with the di�erences of 72.46
km �s�1 . The repetition of the analysis based on the
more accurate, this is HI, data con�rmed this periodic-
ity.

The result was preceded by the study of the distribu-
tion of galaxy redshifts versus nuclear magnitudes in the
Coma cluster core (Ti�t 1974 and references therein),
were strong redshifts periodicity of 220 km �s�1 were
observed. The existence of band structure on nucle-
ar magnitude-redshift diagram was reported by Nanni
et al. 1981 on the basis of better nuclear magnitude
and redshift determination. However, in order to �nd
the e�ect of quantisation it was necessary to apply to
galaxy heliocentric redshift also the correction connect-
ed with the solar galactocentric movement, which is not
precisely known.

Few years later Ti�t and Cocke (1984) generalised
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their claim for all galaxies. There exists global period-
icity. It is equal to 36:3 km �s�1 for broad-line galaxies
and 24.2 km �s�1 for narrow-line galaxies. The later
value afterwards was not con�rmed, so presently the
value of about 36 (or 72) km �s�1 is considered as the
basic one.

Ti�t (1980) shown that the redshift di�erences for
double galaxies have a statistically signi�cant grouping
near multiples of 72 km � s�1 . Afterwards, the initial
sample of galaxies has been enlarged and objects with
more accurate redshift determination (� < 25 km �s�1 )
considered (Ti�t 1982a,b). The periodicity of 72 km �
s�1 was observed only for such well determined red-
shifts. Greater uncertainties blurred the observed peri-
odicity. The way, in which statistical analysis has been
performed was critisied by Newman, Haynes & Terzian
(1989). Cocke and Ti�t (1991) re-addressed this prob-
lem, concluding that the approach was statistically cor-
rect. Schneider and Salpeter (1991) used the sample of
107 isolated binary galaxies with very reliable 21 cm
redshifts. They do not �nd the multiplicity of 144, 216
... km � s�1 , suggested by Ti�t, but they con�rm the
excess in velocity di�erences near 72 km � s�1 .

Considering 40 members of the Local Group Rud-
nicki et al (2001) claimed the existance, at 95 % signif-
icance level, of redshifts periodisation in the considered
sample, however without the precise value of the pe-
riodisation. They concluded, that the uncertainties in
the published redshift determination do not allowed to
make more precise statements. It is worthwhile to note,
that the discretisation of redshift in the Local Group
concern not only galaxies, but also globular clusters.
The further analysis of the problem (Godlowski et al.
2003) shown that the strict quantisation is excluded,
but a weak evidence of period P about 36 (or 24) km �
s�1 is observed.

Guthrie and Napier (1991) from the database ex-
tracted 89 non-Virgo spirals with galactocentric red-
shifts < 1000 km � s�1 and quoted redshift accuracy �
� 4 km � s�1 . An evidence of periodicity about 37.5
km � s�1 was noted. Afterwards they (1996) repeated
the analysis using 247 spirals with galactocentric radial
velocities < 2600 km � s�1 , �nding strong periodisation
with P � 37.6 km � s�1 . The paper precisely describes
the procedure of Power Spectrum Analysis, the hypoth-
esis tested, as well as the determination of the solar
vector in respect to the Galaxy centre.

3. The quasar redshift quantisation

This phenomenon is probably the eldest one, because
in the late sixties of the previous century �rst claims
were published. Cowan (1968) reported an e�ect with
a period of 0.1666 in redshift z = � �/� . The result
was broadly discussed and the re-analysis of existing da-
ta, with increasing number of quasars considered, was

performed. The Power Spectrum Analysis was imple-
mented for periodicity search, which allows to deter-
mine precisely the statistical signi�cance of the e�ects
( Lake & Roeder 1972). Some further claims were that
periodicity is 0.089 in log(1+z), which corresponds to
a factor 1.227 between values of two consecutive maxi-
ma in the 1+z redshift distribution. Kjaergaard (1978)
carefully discussed the manner, in which quasars are
found and concluded, that the strong selection e�ects
in
uence the observed redshift distribution, causing the
existence of several peaks. So, according to his conclu-
sions observed peaks are due to selection e�ects. Quite
recently the sample of 1647 quasars selected in the uni-
form way has been analysed. Some maxima can be ob-
served, but according to Power Spectrum Analysis they
are statistically insigni�cant (Hawkins et al. 2002).

4. Large scale periodisation

Broadhurst et al. (1990) found the high peaks separat-
ed by regular spacing, strongly indicating the existence
of a 128 �h�1 Mpc (where h�1 is the Hubble constant
in units of 100 km � s�1 ) period in the redshift distribu-
tion. This result based on narrow pencil-beam method
was con�rmed by other researchers, who using the dis-
tribution of Abell galaxy clusters founded a 120 Mpc
periodicity (Einasto et al. 1997). Several deep galaxy
redshift surveys show this periodicity the presence of
100-Mpc scale structures (Kirshner 1997). The pos-
sibility of such large scale distribution of matter was
pointed out also by Gonzales et. al (2000).

The Voronoi foam being a model describing of
galaxy distribution in sheets, �laments and clusters
surrounding voids was applied for study the possibil-
ity of explanation this periodicity. Van de Weygaert
(1991) was able to explain the e�ect, but he concluded
that the periodicity, even in the cellular Universe, is
not a common phenomena. The similar conclusion was
reached by Ikeuchi and Turner (1991), who stressed
that the quasi-periodicic pattern is less than only 2�

uctuation in a Voronoi tessellation.

The other simply possibility is the existence of a co-
herent peculiar velocity �eld with the amplitude of the
order of 10�3 and the period 128 h�1 Mpc (Hill, Stein-
hardt and Turner 1991). Such an amplitude is similar to
the peculiar velocity �eld observed in our vicinity and
connected with so-called Great Attractor. The oscillat-
ing Universe (Morikawa 1990) or the change of the val-
ues of the fundamental constants (Hill, Steinhardt and
Turner (1990)) were also involved as possible explana-
tion of this periodicity. Salgado et al. (1996), Quevedo
et al. (1997) discussed the oscillation of gravitational
constant.
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5. The possible explanation of the
large scale periodicity

We study the Newtonian motion of a particle in a grav-
itational �eld in the space{time with the Friedmann|
Lemâitre|Robertson|Walker (FLRW) metrics

(ds2) = (dt)2 �
X
i

a2(t)(dxi)2: (1)

The observational coordinates Xi of the expanding
Universe can be written as

Xi = a(t)xi; dXi = a(t)dxi + xida(t); (2)

and instead of the di�erential of the Euclidean space
dXi , we use the covariant di�erential of the FLRW
space coordinates

a(t)dxi = d[a(t)xi]� xida(t) = dXi �Xi da(t)

a(t)
: (3)

One can check that the interval (1) in terms of these
variables (2) becomes

(ds2) = (dt)2 �
X
i

�
dXi �H(t)Xidt

�2
; (4)

where H(t) = _a(t)=a(t) is the Hubble parameter. As
example the classical Newton action in the space with
the interval (4) and the covariant derivative ( _Xi �
H(t)Xi) takes the following form

SA=

t0Z
tI

dt

"X
i

�
Pi( _X

i �H(t)Xi)� P 2
i

2mI

�
+

�p
XiXi

#
; (5)

where � = MOmIG is a constant of a Newtonian in-
teraction of a galaxy with a mass mI in a gravitational
�eld with central mass MO .

In the terms of the conformal time d� = dt=a in
e�ective units r =

p
xixi = R=a , Pr = PRa the action

(5) takes the form

SA =

�0Z
�I

d�

�
Pr
dr

d�
+ P�

d�

d�
� P 2

r + P 2
� =r

2

2m
� �

r

�
; (6)

where m = a(�)mI .
Now let us consider a probably particle moving in a

plane in the cylindrical coordinates

X1 = R cos �; X2 = R sin� (7)

in the gravitational �eld with Schwarzschild's metrics

ds2 =

�
1� 2�

mr

�
dt2� dr2

1� 2�=(mr)
�r2 sin(�)2d�2:(8)

In this paper we consider the case of rigid state when
densities of a energy and a pressure are equals. In this
case a(�) =

p
1 + 2HI(� � �I) , where the HI is the

initial value of Hubble velocity (Behnke et. al 2002). In

Figure 1: Solution equation of motion for the action (9) at
r(�I) = 1, r0

�(�I) = 0, and �(�I) = 0 for HI = 1, mI = 1,
RI = 1, P� = 1, and rg = 0:5. For these values of initial
data and integrals of motion the total system energy (de-
�ned from (9)) is equal to zero at initial point � = �I . This
point corresponds to initial point of the structure creation.

the terms of the conformal time d� = dt=a in relative
units r = R=a , Pr = PRa the action takes the form:

Sschw =

�0Z
�I

d�

�
Pr
dr

d�
+ P�

d�

d�
�

�Qschw

q
P 2
rQ

2
schw + P 2

� =r
2 +m2 +m

�
; (9)

where Qschw =
�
1� rg

r

mI

m

�1=2
, rg = MOG , and Pr ,

P� are conjugate impulses to corresponded coordinates.
The path of the probably particle is shown on the Fig. 1.

We chose the total energy of a system de�ned in (9)
as

E = Qschw

q
P 2
r Q

2
schw + P 2

� =r
2 +m2 �m (10)

at the initial point � = �I as equals zero. The tra-
jectory begin at the point (1; 0). From Fig. ?? we
see that some region are more occupied then others. In
such a way we show that in the expanding FLRW met-
rics and assuming rigid state of matter, where density
equals pressure, it is possible to obtained the formation
of clusters from the uniform distribution of particles
with zero gravitational distributional energy. It is pos-
sible to regard this mechanism as a main reason of cel-
lular structures is the Universe. With the �ne tunning
we are able to �nd the distributions equals to about
130 Mpc.

6. Conclusions

There are several e�ects, which are called the redshifts
quantisations. The scale of this e�ect is drastically dif-
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ferent. From the almost local values to fantastically
great part of the Universe. The clear interpretation
is only in the case of 100{Mpc periodisation, which
is probably due to the large scale structure, but such
structure origin is not easily explained. The discretisa-
tion of the quasar redshifts seems to be an artifact of
selection e�ects and smallness of the samples. On the
other hand Zhuck et al. (2001) show that the quasars
seems to be located in thin walls of web with the size of
50� 100 Mpc. This �nding is in good agreement with
the size of voids, as well as not in great contradiction
with the large scale distribution of galaxies revealed by
optical data.

In the case of 36 (or 72) km �s�1 periodisation,
which is of the main interest of the adherents of red-
shifts quantisation, we express the opinion that the
e�ect is not convincingly shown. It is not quite clear,
why from several thousands of galaxies in the Local
Supercluster only about 250 objects (i.e. less than 4%)
is taken into account, which can caused a serious bias.
It will be interesting to compare the real di�erences be-
tween various galaxy redshifts determination and not
only to consider to quoted by authors formal errors.
This point was stressed also by Guthrie and Napier
(1996). If this alleged e�ect will be con�rmed, this will
open totally new areas of investigations, opening also
doors for so-called new physics. Beforehand, however,
the detailed analysis of observational errors and applied
statistical methods should be performed. The papers
presenting the results have obtained till now clearly
shown the weak and the strong points, which will be
fruitful in further work. Moreover, the investigations of
the redshift distribution in other superclusters will be
of great interest. Due to accumulation of precise mea-
surements of redshifts in the last years the re-discussion
of the redshift discretisation is possible and could help
to solve this bizarre problem. We show that the new
physics is not needed for explanation of the existence
of the large scale periodicity of about 130 Mpc. Us-
ing very simple model in which a massive particle is
circulating around the source of gravitational �eld in
the expanding Universe with FLRW metrics it is possi-
ble to obtain regions with higher density. This means
that particles will be with greater probability located
in some regions than others. With appropriate �ne
tunning it is possible to obtain the separation between
dense regions (structures) of the order of 130 Mpc,
which is consistent with observations.
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Regularities of fundamental physical constants (FPC) and multiplicities for masses, time (frequencies), densities,
etc. are obtained as a result of the analysis of these constants. Display of multiplicities is typically for processes,
phenomenon and the e�ects observed in the nature by virtue of universality of FPC.

1. Introduction

Such fundamental constants as velocity of light in vacu-
um, Plank constant determines the calculated quantity
of an electron charge and a relation of these values with
a gravitational constant determine the Planck mass.
Numbered constants, their relations are used for the
characteristic and exposition of electromagnetic, grav-
itational interactions, etc. P. Dirak has given a series
of relations, the multiple to the quantity 1040 , it is: a
relation Xc �Xg � 1040 , where:

Xc is the constant of an electromagnetic interac-
tion,

Xg is the constant of a gravitational interaction;
| the dimensionless age of the Universe determined

as the relation of age of the universe and time of passage

by a signal of the size of a nucleon: 1017s
10�14m�3�108m=s

�=
1040 , where: 1017 s is the age of the Universe;

10�14 is the size of a nucleon;
3 � 108 m/s is velocity of light in vacuum. is mul-

tiply to the quantity 1040 a relation of the size of the
Metagalaxy and the size of a nucleon.

The number of heavy particles N in the universe is

multiply 1080 : N =
�

hc
Gm2p

�2
� 1080 , where: G is a

gravitational constant;
mp is the mass of a proton;
c is velocity of light in vacuum;
h is Plank constant.
The Heisenberg nonlinear �eld theory includes, the

new constant o�ered to him, the multiply 1020 :

�pc =
t

mpc
� 1020lp:

One can see, a series of relations of FPC has multi-
plicities 1020 ; 1040 ; 1080 , which are used in physics for
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exposition and the characteristic of processes of a weak
coupling, a �eld theory, de�nition of masses, etc.

2. Multiplicities of masses, time
(frequencies), etc.

Let's make a series of multiplicities for masses (multi-
plicity 1020 ), starting from quantity of mass of nucleons
in the Universe 1052 kg aside diminutions: m (kg)

1052 1032 1012 10�8 10�28 10�48 10�68 10�88 10�108:::

and analyze the obtained values:
m = 1052 is the mass of nucleons in the Universe;

...

10�8 is the Planck mass;
10�28 is the calculated mass of a proton;

...

10�68 is the calculated mass of a photon.
Let's make a series of multiplicities for time, starting

from estimated quantity of a lifetime of a proton 1038

s (1037 s): t (s)

1038 1018 10�2 10�22 10�42

or

1037 1017 10�3 10�23 10�43

1017 is a lifetime of the Universe from the moment
of the Big Bang;

1018 is the quantity inverse Hubble constant;
103 Hz is occurrence of radiation of the long-wave

radiowaves;
10�23 is a lifetime of a nucleon resonance �� ;
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1023 is the frequency of a proton relevant to a
Compton wave length of a proton;

1043 Hz is the Planck frequency.
Let's make a series of multiplicities for densities,

starting from Planck density. We shall receive the fol-

lowing values: �
�
kg
m3

�
10971057101710�23

�
10�26

�
� � 1097 is Planck density;
� � 1057 is density of a nucleus of a quark;
� � 1017 is density gluon substances;
�c � 10�26 kg

m3 is the critical density estimated from
a relation, on Hubble constant.

At values of densities � > �c development of the
Metagalaxy happens on model of the closed Universe.
We shall approach to the analysis of this standing later
when we shall view cosmological model.

...

3. Cosmological model

If to make a series of multiplicities for linear dimensions
starting from the Planck size and to reduce values of
multiplicities of masses, densities, frequencies (time) in
the table, we shall receive the basic relations of the
substances evolve, i.e. cosmological model (table 1):

Not featuring explicitly the scenario, we shall stop
on separate standings which follow from cosmological
model.

Such existing formations as black holes, neu-
tron stars are the testimony of stages of evolution of
the Metagalaxy under the suggested scenario of above
mentioned cosmological model and are an integral part
of the cosmological objects which have been given birth
during evolution at the relevant stages.

Evolution of the Metagalaxy is quantum pro-
cess. The level of quantization itself corresponds for
each stage of development and shaping of the relevant
kind of a substance (quarks, neutrons, atomic sub-
stance, etc.).

Evolution of Metagalaxy happens inside an
orb to radius of SHvartsshild, but, nevertheless,
process of expansion is prolonged and till today since
simultaneously to magni�cation of mass there is also a
magni�cation of radius of Metagalaxy.

Structurization of nucleons at a stage of shap-
ing of nucleons has taken place, and the magni�-
cation of mass of Metagalaxy and masses of substance
in it is prolonged and in the subsequent periods due
to magni�cation of number of nucleons and shaping of
macrostructures of Metagalaxy.

Process of formation of mass is prolonged and
will be prolonged up to quantity 1072 . After terminat-
ing structurization of Metagalaxy (t = 1032 ), in reso-
nance stage, will be a quantum decay of substance such
in previous stage.

Structurization of space - time - substances
(vacuum - �elds - substances) creates a uniform, quan-
tized continuum at all levels, possessing blanket laws of
the organization, and as a whole, with the mechanism
of regulation of processes, forms a blanket Universum.

The given cosmological model for the scenario of the
Big Bang puts some questions which have the solution.

...

4. Conclusion

As a result of the analysis of multiplicities of FPC the
multiplicities of masses, time (frequencies) and struc-
ture of space are detected.

A corollary of these standings is the inference about
structure as a whole of space - time - vacuum - �elds
- substances which form a uniform blanket continuum.
The given standing has a series of the subsequent stand-
ings.

In particular, stated by a series of authors the hy-
pothesis about the 
uctuating nature of values of phys-
ical quantities [1, 2, 3, 4, 5, 6] in my opinion is not true,
since change of one of values of physical quantities gives
in decay of all continuum that excludes a problem of
their possible limiting changes. The problem of a 
uc-
tuation of values of physical quantities could take place
in preceding, "adjusting" models.

In this connection it is possible to view and a prob-
lem on a constancy of physical constants. If to starting
from positions of structure of a uniform continuum of
space - time - vacuum - �elds - substances and the giv-
en model of evolution that the deduction and about a
constancy fundamental physical constants and an in-
variance of them eventually is inevitable.

From these positions the deduction about struc-
turedness and at a microlevel that gives in an opportu-
nity of development of models of particles is inevitable.
These models give an explanation of some the existing
e�ects which are not having adequate models of pro-
cesses, and existence of these e�ects can be considered,
in turn, as one of proofs, structure of a continuum as a
whole.

...

One of the standings demanding the further devel-
opment is the problem of the physical content of a Hub-
ble constant which has also other interpretations (see
tab. 1 (Time (frequencies))). On numerical value it
corresponds to a series of physical quantities and is not
univalent in treatment. This problem is developed by
a series of authors. Fundamentality of its content at a
level of the main law of dynamics is uncovered in work
[7].

...
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Table 1: Basic relations of the substances evolve
Value of Value of Density, Frequencies Stages
radius, m mass, kg kg

�
m3 (time), 1/s

10�35 10�8 1097 1043

Shaping quarks.
10�15 1012 1057 1023

Shaping neutrons.
105 1032 1017 103

Shaping stars.
1025 1052 10�23 10�17

The present stage of development.
1045 1075 10�63 10�37

... ... ... ...

The brief analysis of some standings of model of
the Big Bang (BB) under the script of development of
Metagalaxy from Planck mass (that does not exclude
existence of other cosmological models under script BB
with other initial parameters [8]) is carried out in this
work; stages are chosen and underline quantum char-
acter of stages; problems formation of mass posed and
discordances of existing model BB are marked, etc.

But the problem of a viewed problematic of cos-
mological model is much wider, since cosmological rep-
resentations re
ect a degree of understanding and ad-
equacy of our representations about the continuum,
shapes of its display and parameters.

...

To some extent, in a problem of the physical con-
tent of FPC were engaged from times of discovery of
physical laws. In physics of XX century is M.Plank,
P.Dirak, A.Ejnshtejn, V.Gejzenberg, etc. Among them
is G.Gamov, which centenary is celebrated this year.
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Very straightforward arguments proving the physical non-existence of GW's and of BH's. They are so simple that
even the members of the Wheelerian establishment will understand them.

An obvious premise : in (the exact, i.e. non-
approximate [1]) general relativity (GR) only the con-
cepts and the results that are independent of the choice
of the system of general co-ordinates have a physical
meaning.

i) Let us consider any solution of the Einstein �eld
equations of GR which has { in a given co-ordinate
system { a de�nite undulatory character, i.e. that re-
presents a gravitational wave (GW). Now, through a
�nite sequence of co-ordinate transformations, endowed
with suitable undulating properties, the primary wave
character of our solution can be fully obliterated. Thus,
this character has no physical meaning, it is only a ma-
thematical property of the original co-ordinate system.
Q.e.d. {

i ') A �rst proof of the physical non-existence of the
GW's was given in 1917 by Tullio Levi-Civita [2]. Oth-
er proofs have been published in recent years by the
present writer [3].

ii) As it was remarked by Eddington [4], the solu-
tion of the problem of the Einsteinian gravitational �eld
generated by a point mass M (at rest) is given { if r ,
# , ' are spherical polar co-ordinates { by the following
spacetime interval:

ds2 = [1� 2m

f(r)
]c2dt2 � [1� 2m

f(r)
]�1[df(r)]2 �

�[f(r)]2[d�2 + sin2 �d�2]; (1)

where m � GM=c2 , and G is the gravitational con-
stant; f(r) is any regular function of r .

Now, the invention of the black holes (BH's) is due
to a (mis)interpretation of that form of solution (1) for
which f(r) � r : it is the so-called standard solution,
erroneously named \Schwarzschild solution". In reality,
Karl Schwarzschild chose f(r) � [r3+(2m)3]1=3 , see [5];
this original Schwarzschildean form is singular only at
the spatial point r = 0. Thus, the notion of BH does

1e-mail: angelo.loinger@mi.infn.it

not have a physical meaning, it is only a (�ctive) by-
product of a very particular choice of the function f(r).
Q.e.d. {
APPENDIX

All the (erroneous) loci communes concerning the
GW's and the BH's are respectively illustrated in the
review articles by Schutz [6] and by Celotti et alii [7].

\Truth is aristocratic".
Howleglas
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It is considered the concept of space-time in the electrodynamics based on the dual particle-wave nature of the
electromagnetic �eld. The coordinate space-time is de�ned by the Galilei transformation. The momentum space-
time is de�ned by the Lorentz transformation. It is considered the dynamics of the electron in the electromagnetic
�eld. The electromagnetic energy and the gravitational energy of the electron behave in the di�erent way. The ratio
of the electromagnetic energy and the gravitational energy for the electron follows the Lorentz transformation.

According to the Einstein theory of special relativi-
ty [1], the space-time in the electrodynamics follows the
Lorentz transformation

x0 =
x� vt

(1� v2=c2)1=2 ; y0 = y; z0 = z;

t0 =
t � xv=c2

(1� v2=c2)1=2 ;
(1)

where coordinates of space x , y , z and time t describe
the rest frame, coordinates of space x0 , y0 , z0 and time
t0 describe the moving frame, v is the speed of the
moving frame, c is the speed of light. In the space-
time de�ned by the Lorentz transformation, observers
in the rest and in the moving frames describe events
with the di�erent intervals of length and time. An ob-
server in his own frame measures the intervals of length
and time as �x = x2 � x1 , �t = t2 � t1 respectively.
An observer in the other frame measures these inter-
vals of length and time as �x0 = �x(1 � v2=c2)1=2 ,
�t0 = �t=(1 � v2=c2)1=2 respectively. According to
Einstein, an observer in his own frame measures the
true (physical) intervals of length and time whereas an
observer in the other frame do not. Then the sentences
of an observer in some frame cannot be veri�ed by ob-
servers in the other frames. Therefore the Einstein the-
ory of special relativity contains non-veri�ed sentences
that is not acceptable. The theory has the physical
meaning only if any event is described by observers in
all inertial frames with the same intervals of length and
time. Then the sentences of an observer in some frame
can be veri�ed by observers in the other frames.

In [2], the concept of space-time in the electrody-
namics was proposed based on the dual particle-wave
nature of the electromagnetic �eld. The main idea is
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that in the electrodynamics the coordinate space-time
and the momentumspace-time follow di�erent transfor-
mations. The coordinate space-time follows the Galilei
transformation. The momentum space-time follows the
Lorentz transformation. The coordinate space-time de-
�nes intervals of length l and time t and hence the
scales of momentum p / 1=l and energy E / 1=t .
Then any event is described by observers in all inertial
frames with the same intervals of length and time as
well as with the same scales of momentum and energy.
All dynamic vectors in the electrodynamics decrease in
the moving frame in accordance with the Lorentz trans-
formation

f 0 = f (1� v2=c2)1=2: (2)

Unlike the Einstein theory, f 0 is the true (physical) val-
ue of the dynamic vector in the moving frame.

Consider the dynamics of the electron with the
charge e and the mass m in the electromagnetic �eld.
In the rest frame, the electron experiences an accelera-
tion due to the electromagnetic force

w =
e

m
E; (3)

where E is the strength of the electromagnetic �eld.
In the frame moving with the speed v , the accelera-
tion due to the electromagnetic force experienced by
the electron is obtained with the use of the Lorentz
transformation

w0 = w(1� v2=c2)1=2: (4)

Unlike the Einstein theory, the value w0 is the true
(physical) acceleration experienced by the electron in
the moving frame.

Equation (4) along with eq. (3) may be interpreted
as that the ratio of the electromagnetic energy (charge)
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and the gravitational energy (mass) for the electron in
the moving frame decreases as

e

m
/ (1� v2=c2)1=2: (5)

One can treat eq. (5) as an increase of the mass of the
electron or as a decrease of the charge of the electron.

Thus the electromagnetic energy (charge) and the
gravitational energy (mass) of the electron behave in
the di�erent way. According to the latter interpreta-
tion of eq. (5), the gravitational energy (mass) of the
electron is �xed with the speed of the frame m = const ,
and the electromagnetic energy (charge) of the elec-
tron decreases with the speed of the frame as e /
(1 � v2=c2)1=2 . It should be stressed once again that
the decrease of the electromagnetic energy (charge) of
the electron is the true (physical) e�ect.
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In this paper the authors judgements about physical and psychological time are given.

In the universe the passing of physical time can-
not be clearly perceived as matter and space; one can
perceive only irreversible physical, chemical, and bio-
logical changes (hereinafter referred to as \change" ) in
cosmic space. On the basis of elementary perception
(sight) one can conclude that physical time exists only
as a stream of change that runs through cosmic space
(1). The terms \physical time" and \change" describe
the same phenomenon. Physical time is irreversible.
Change A transforms into change B, B transforms into
C and so on. When B is in existence A does not ex-
ist anymore, when C is in existence B does not exist
anymore.

The question arises: Why is it that irreversible phys-
ical time is experienced as past, present and future?
The answer is obtained by analysing the scienti�c way
of experiencing. The eyes perceive a stream of irre-
versible change. Once elaborated by the mind, the
stream of change is experienced chronologically through
psychological time that is a part of the human mind.

Let's look at the relationship between physical and
psychological time by carrying out an experiment. Take
a pen and move it from the left side of the table to
the right. You can perceive only the movement of the
pen in space, but you experience that the pen has also
moved through time. How come? Perception passes
�rst through psychological time and then the experi-
ence occurs. That's why you experience the movement
of the pen in time. But on the basis of elementary
perception (sight) one can only state that the pen has
changed position in space.

It is not that change happens in physical time,
change itself is physical time. In the cosmic space
itself time run only as a stream of change and not as a
physical reality. Space is a timeless phenomena. The
universe is composed out two basic components: of
space and of matter that is continuously changing.

We can measure with clocks the duration and speed
of change. Experiments with high precision clocks con-
�rm that change runs slower in the parts of univer-
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sal space where the gravitational �eld is stronger. The
speed of clocks near the sea in Venice is slower than on
the mountain Monte Rosa, because gravity is stronger
near sea level.

The special theory of relativity has put forward the
famous \problem of twins" ; according to the special
relativity, time runs slower in a fast moving space ship
than on Earth, so if one of the twins were to travel
through space on a fast space ship and return to Earth
after �ve year's time, he would �nd himself younger
than his brother who would have stayed home. Ex-
periments with high precision clocks taken aboard fast
planes have veri�ed this. And this is where the question
arises: Does time in fast 
ying planes really run slower
than on Earth? To be empirically consequent, one has
to admit that by means of an elementary perception
(sight) it is only possible to conclude that the speed
of clocks in a moving plane is smaller than on Earth.
It is only by indirect reasoning that we interpret dif-
ferent clock speeds as meaning di�erent time running
speeds in the plane and on Earth. By observing the
clocks in the plane and on Earth, it is only possible to
state that the speed of change in fast moving inertial
systems is lower than in slower inertial systems. Take
two space ships heading towards one another on two
parallel straight lines, the former moving at v1=0.5 c,
the latter at v2=0.001 c (where c = speed of light). In
the moment the two space ships meet, the clocks are
set. The clocks on the former will run slower than the
clocks on the latter, spacemen on the former will grow
old slower than spacemen on the latter. The hypothesis
that time as a physical quantity runs slower on the �rst
ship than on the second, is only our deduction, and it
cannot be empirically proven.

The understanding of physical time has changed
over the ages. For ancient Greeks, Indians, and Mayans,
time was considered a cyclic phenomenon; time mov-
ing in circles, with no beginning and no end. When
Judaeo-Christian civilization arose in Europe, another
understanding of time became prominent - time going
forward in a straight line. According to this civiliza-
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tion, time has its beginning with God's creation of the
universe and will have its end with the Last Judgement.
In Newtonian physics, physical time is an independent
quantity (absolute time), running uniformly through-
out the entire cosmic space (absolute space). In the
General Theory of Relativity, time is no more an inde-
pendent physical quantity - it is linked with space in
four-dimensional space-time.

According to this understanding time is not a con-
sistent part of the universe. It exists only as a \by-
product" of the matter that change in the cosmic space.
In the universe time does not run. Universe is an eter-
nal self-renewing system in dynamic equilibrium. Big
bangs are cyclic, they have no beginning and will have
no end. Researches of several scientist con�rm that
thesis: Kompanichenko from Russia, Turok from Cam-
bridge and Steinhardt from Princeton.

It makes sense only for humans that morning is be-
fore the evening, that father is born before the son.
From the point of the universe \change before" and
\change after" makes no sense, they all happen in the
timeless universal space that was never created.

By observing the continuous stream of irreversible
physical change humans have developed psychological
time through which we experience the universe. Psy-
chological time is reversible. One can go back into past.
This creates an idea that physical time also has a past,
but this is not so.

General Relativity allows for speculation about time
travel. Someone could travel through a black hole
with a spaceship, go back into the past and kill his
grandmother. The consequence is that he could never
have been born (2). Travelling into the past through
black holes is not possible because physical time is ir-
reversible; the past exists only as psychological time
through which it is not possible to travel with a space-
ship.

The speed of psychological time does not always fol-
low physical time, it depends on one's well-being. The
more relaxed you are the slower the speed of psycho-
logical time is. In modern society time passes quickly,
in so called primitive societies time passed slowly. In
an altered state of consciousness, such as meditation,
ecstatic dance, deep prayer, psychological time stops.

Already in a normal state of health there are, ev-
ery now and then, aberrations of subjective time such
as acceleration or deceleration of lapse of time. Under
several mental disturbances (like those characterising
serious mental psychoses, drug-induced states, trances,
mediations, as well as other deep \altered" states of
consciousness), these anomalies / peculiarities become
more pronounced. The 
ux of time may even cease
completely (the sensations usually described as \time
standing still" , or \suspended" , arrested time or ex-
pand without limit (the feelings of \everlasting now,
eternity" ) (3).

Human consciousness has the capacity to watch the

human mind (4). Everybody can watch his thoughts
and emotions. By watching them the speed of thought
and the intensity of emotion calms down. Once the
mind stops, human consciousness can watch and rec-
ognize itself When the mind stops, psychological time
stops too. One experiences physical time consciously as
he/she perceive it: as a stream of change.

In the conscious experience one experiences what
he/she perceives. The mind does not elaborate the per-
ception, so the gap between perceiving and experiencing
is gone. Conscious experience is direct.

rational experience

universe | perceiving (senses) | elaborating (mind)
| rational experience

conscious experience

universe | perceiving (senses) | conscious experience

One can imagine consciousness as his/her inner
space and psychological time as a stream of thoughts
running in the inner space. According to the Buddhist
tradition the inner space in which stream of thoughts
run and outer space in which material change run are
undivided.

Allan Wallace says: The distinction between exter-
nal and internal is an illusion; internal and external
space are ultimately non-dual. This is the absolute
space of phenomena. In Buddhist literature, this is
the Great perfection out of which the entire universe
originates (5).

We are living in the space and the space is inside
of us. In cosmology the space is mostly described with
Euclidian and Riemann geometries. Our imagine of the
universal space depends on which geometry we use to
describe it, for the human mind however its real nature
remains unknown.

Euclidian geometry is based on the theory of num-
bers. Regarding the theory of numbers natural and
real numbers are both in�nite and at the same time re-
al numbers are more than natural ones. Real numbers
are composed of algebraic and transcendental numbers,
with natural numbers we can numerate only algebraic
numbers. Logicians con�rm that there is no contradic-
tion if we say that the in�nity of natural numbers is
smaller of real numbers and also if we say that they are
equal (6).

By numerating each mille of a straight line with
natural numbers we will get an in�nite distance and by
numbering a parallel line with real numbers we will al-
so get an in�nite distance. If we say that the in�nite
distance made out of natural numbers is shorter than
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one made out of real numbers there is no contradiction,
if we say that they are equal there is also no contradic-
tion. So an in�nite distance does not mean a real ex-
isting and measurable distance; in�nite distance + 100
miles = in�nite distance. That's why the application
of an in�nite distance in cosmology creates di�culties.
In the universe we can observe and measure only �nite
distances between objects. When we imagine that uni-
versal space might be in�nite as is Euclid space we do
not know exactly what this means.
With the application of Riemann's geometry in cos-
mology the image of in�nite three-dimensional cosmic
space changes into the image of �nite spherical four-
dimensional space. The �nite round space one can
imagine only in the in�nite Euclid space. By choosing
spherical �nite geometry as a model for cosmic space
the question arises: what is beyond the borders of the
universe, there must be some bigger space within which
the �nite universe lies?!

Scienti�c experience of the universal space is limited
by geometrical models through which one experience
it. Its real nature one can discover by watching the
mind having conscious experience of it. Watching the
mind is the science of the space, of the true vacuum,
of consciousness. Practicing it regularly one becomes
aware of the inner space and it being undivided with
the outer space. One reaches the direct experience of
the universe and him/her self. This experience reaches
beyond the mind and time into the eternal quality of
existence.
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Since the moment of its emergence, the develop-
ment of the Solar system, and in particular of the
Earth, has been strictly governed by the laws of ther-
modynamics. These laws govern the behavior of ocean
waters, the Earth's crust, and Nature. Based on i-
thermodynamics, the monograph exposes the e�ect of
ocean and atmospheric currents on Earth's rotation-
al speed, gives an explanation for ancient 
oods and
glaciation, and establishes the atmosphere's chemical
composition during the period of formation of coal, oil
and gas deposits. The sites of ocean thermal energy
conversion plants, which would not a�ect Earth's cli-
mate, have been identi�ed. The most e�ective methods
of recovering natural energy have been substantiated.
In turn, �-thermodynamics has made it possible to
assess the rate of formation of Earth's crust and as-
sociated therewith periods of volcano eruptions and
earthquakes. As a rule, seismic zones correspond to
geothermal heat sources. An analysis of the cycles of
power plants utilizing Earth's heat has been presented.

The monograph is intended for experts in Earth-
related power and physics problems as well as for those
readers in geophysics who have a solid background in
this area. It can also bene�t students of higher educa-
tion institutions.

2. Zhuck N.A. \On Einstein's Per-
son Cult and its Negative In
uence on
Physics. | Kharkiv: \Infobank" Ltd,
2003, 88 pp. (In Russian).

The Albert Einstein's abilities, life and scienti�c cre-
ative work are given and analyzed in the work on the
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basis of the known and little-known items of informa-
tion, the author's proper fundamental researches and
original argumentation, the reasons resulting in his im-
age idealization and relativity theory cult, comparable
on a scale with medieval inquisition are observed. The
Einstein's sexual constitution and his close relatives is
explored and shown for the �rst time, that its weakness
was combined not with any physicist's intellectual tal-
ents, but with his enterpreneurship mentality termed
as scienti�c business. The Einstein's person cult con-
nection with dramas and tragedies of modern scientists
is observed, as well as with those forces, which are con-
venient and this cult suits them till nowadays.

This work proves useful for all persons concerning
with physics and the history of physics.
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